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A thorough discussion is given of the original observations by Robert Brown, of particles under-
going what is now called Brownian motion. Topics scanted in the literature, the nature of those
particles, and Brown’s thought that he was observing universal organic particles whereas he was
observing the Airy disc of his lens, are treated in detail. Also shown is how one may make the same
observations, including how to make a ball lens microscope. Appendices contain tutorials on the
relevant theory.

PACS numbers:

I. INTRODUCTORY

In June 1827, the celebrated British botanist Robert
Brown was observing pollen of the plant Clarkia pulchella
immersed in water, with his one lens microscope (essen-
tially, a magnifying glass with small diameter and large
curvature). He noticed that particles ejected from the
pollen were of two shapes: some were oblong and some
smaller ones were circular, and they were jiggling about
in the water. Thus commenced his investigations, which
showed that anything sufficiently small would move simi-
larly. Of course, we now understand, as Brown never did,
that the jiggling is due to the irregular impact of water
molecules.

Physicists care about particles. This paper arose from
curiosity as to the nature of the particles Brown observed.
That question is answered here.

Brown was motivated in his investigations by the ob-
servation, for all objects he bruised, that the smallest bits
in motion were circular, and of about the same diameter.
He called these bits “molecules” (a word in common us-
age meaning tiny particle), suggesting that they might be
universal building blocks of nature. However, Brown was
actually seeing the effects, on the images of sufficiently
small objects, of the diffraction and spherical aberration
of his lens. A literature search has found this point tersely
suggested once[1]. An experimental and theoretical ex-
amination of this issue is given here.

Although this paper was initially intended to be brief,
it grew with the realization of the richness of the sub-
ject matter, a weaving of history, botany and classical
physics, with experimental possibilities. We hope that,
with appropriate selectivity and emphasis, it may be an
interesting and accessible resource for various projects for
teachers and students from middle school to college.

Section II, History, discusses Clarkia pulchella. It was
found by Meriwether Lewis in 1806 on the return trip of
the Lewis and Clark expedition. It was named and pub-
lished in 1814 in England by Frederick Traugott Pursh.
Its seeds were first collected and sent to England in 1826
from the northwest Pacific coast by David Douglas. They

arrived in London in 1827 and were grown there, provid-
ing flowers for Brown’s investigations.

Section III, Jiggly, peruses Brown’s classic paper.

Section IV is entitled Botany. The question which mo-
tivated this paper was answered only when it reached one
of the authors (D. B.): the oblong particles Brown saw
are amyloplasts (starch organelles, i.e., starch contain-
ers) and the spherical particles are spherosomes (lipid
organelles, i.e., fat containers). Some history of early
pollen research and some physiology of pollen are dis-
cussed here.

Section V, Microscopy, discusses how to go about du-
plicating Brown’s observations of Clarkia pollen. This
was undertaken by the author least capable in this re-
gard, a theoretical physicist (P.P.), in expectation of un-
covering difficulties that a novice might face, and is writ-
ten in the first person. This is followed by a discussion of
Brown’s lens. It closes with an experimental investigation
(by B. C.) of imaging by a 1mm diameter spherical (ball)
lens, whose magnification is close to that of Brown’s lens.

Section VI, Theory, is meant for advanced physics un-
dergraduates or graduate students and their teachers. It
consists of seven theoretical appendices, tutorials on clas-
sical physics. Most of this material has been known for
over a century. Some of it has found its way into text-
books. Apart from the benefit of finding all the relevant
material in one place, in self-contained form, each ap-
pendix contains some novel treatment. Some material
may suggest further, independent, investigations. The
subject matter is A) Brownian motion, B) viscous force
and torque, C) WKB derivation of geometrical optics
(the eikonal equation) from the wave equation, D) ap-
plication to mirrors and lenses, E) Huyghens-Fresnel-
Kirchhoff construction, F) imaging of a point source of
light (diffraction and spherical aberration receiving a uni-
fied treatment), and G) imaging of an illuminated hole.
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II. HISTORY

This section describes how the plant Clarkia pulchella
of the American Northwest came to be grown in England.

A. Lewis

In 1778, 1785 and again in 1792, the American botanist
Humphrey Marshall (1722-1801) proposed to the Ameri-
can Philosophical Society of Philadelphia that they sup-
port a botanical expedition westward to the Pacific
ocean[2]. Thomas Jefferson (1743-1826) joined the So-
ciety in 1790. He heard the last proposal and tried to
advance it in 1793, but the project foundered.

On June 20, 1803, first term President Thomas Jeffer-
son sent a formal letter to his private secretary and aide
Meriwether Lewis (1774-1809), a captain in the 1st U. S.
Infantry. It requested that he head an expedition up the
Missouri River to find a navigable route to the Pacific
Ocean. No mention in this letter was made of botany,
but Jefferson had it in mind. Following Jefferson’s rec-
ommendation, as part of his preparation, in Philadelphia,
in May and June of 1803, Lewis took a crash course in
botany from Benjamin Smith Barton (1766-1815), who
had written the first American textbook on the subject.

Lewis was authorized to choose a co-commander, and
he chose William Clark (1770-1838), who had earlier been
Lewis’s commanding officer. On May 14, 1804, the Lewis
and Clark expedition set out from St. Louis. They
reached the Pacific at the mouth of the Columbia River
on Nov. 7, 1805 (OCEAN in view! Oh! The joy! wrote
Clark in his journal). They returned on September 23,
1806, having accomplished all that was asked of them
and more.

On the return journey, while waiting for a month in
the Kamiah Valley of Idaho for the snow to melt in the
mountains, Lewis wrote on June 1, 1806:

I met with a singular plant today in blume, of which I
preserved a specemine. It grows on the steep sides of the
fertile hills near this place. . . . I regret very much that the
seed of this plant are not yet ripe and it is probable will
not be so during my residence in this neighborhood.”[3]

and he gave a detailed botanical description of the flower.

B. Pursh

Upon his return, in April 1807, since Barton had failed
to do anything with specimens sent on earlier, Lewis
sought the advice of Bernard McMahon (1775-1816).
He was a Philadelphia seedsman esteemed by Jefferson
and entrusted to grow the seeds brought back by Lewis.
McMahon suggested employing Frederick Traugott Pursh
(1774-1820), the curator (and often collector) of Barton’s

collection. Lewis hired Pursh to prepare a catalog of the
plants he had collected.

Unhappy working for Barton, Pursh moved to the
home of McMahon, and had achieved a great deal by
1808. Meanwhile, Jefferson sent Lewis to be Governor
of the Louisiana Purchase territory. This was a terribly
demanding job, and ultimately led to Lewis’s untimely
death. Letters sent to Lewis by McMahon, who was per-
sonally financing Pursh, went unanswered. Therefore,
McMahon recommended Pursh to a distinguished medi-
cal doctor and botanist, Dr. David Hosack (1769-1835).
Hosack was Alexander Hamilton’s family physician, who
tried to save Hamilton’s life after his duel with Aaron
Burr. In 1801, Hosack had bought 20 acres in Manhat-
tan (presently the site of Rockefeller Center), and cre-
ated Elgin Botanical Gardens, the first such enterprise
in America.

Pursh left Philadelphia for New York in April 1809,
to be gardener at Elgin. He took his work and many
of Lewis’s specimens with him. However, the upkeep
of Elgin Gardens was too expensive. Hosack sold it to
New York State in 1810, after which it soon deteriorated.
Pursh left for the West Indies in late 1810, partly for
his health and partly to collect plants for Hosack. He
returned to the United States in the fall of 1811, and
then sailed to London in the winter.

Pursh published his volume Flora Americae Septentri-
onalis in mid-December 1813. In it, he gave the name
Clarkia pulchella (beautiful Clarkia) to the flower men-
tioned above, of course, in honor of Clark.

C. Douglas

However seeds of Clarkia pulchella only made their way
to England in 1826[5]. The plant was apparently not
grown before then in the United States, either. It was
found on a collecting expedition by the adventurous, in-
defatigable, assiduous botanical collector, David Douglas
(1799-1834), after whom the Douglas fir is named.

Douglas was hired by Joseph Sabine (1770-1837), sec-
retary of the Horticultural Society of London, to collect
plants and seeds from the American Northwest. The
Hudson’s Bay Company also sponsored the trip. Dou-
glas embarked on July 25, 1824, on the Hudson’s Bay
Company brig William and Ann. It left Gravesend on
July 27, stopping at a few places (e.g., Rio de Janeiro,
for three weeks), and traveled around Cape Horn. It
dropped anchor at the mouth of the Columbia River (part
of whose meandering length is now the western two-thirds
of the border between Oregon and Washington) on April
7, 1825. Douglas wrote in his journal:

At one o’clock noon, we entered the river and passed
the sand barrier safely (which is considered dangerous
and on which I learn many vessels have been injured and
some wrecked). [The William and Ann, under another
captain, was wrecked on this bar on March 10, 1829,
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with all hands lost.] Thus my long and tedious voyage of
8 months 14 days from England terminated. The joy of
viewing land, the hope of in a few days ranging through
the long wished-for spot and the pleasure of again resum-
ing my wonted employment may be readily calculated. ...
With truth I may count this one of the happy moments
of my life.

The brig anchored on April 12 at Fort George (now
in Astoria, Oregon), on the south shore of the Columbia
River. However, the fort had recently been abandoned
in favor of a new headquarters of the Hudson’s Bay
Company at Fort Vancouver (now in Vancouver, Wash-
ington), 90 miles up the Columbia River. After some
botanizing and after collecting his gear from the brig,
Douglas disembarked and with one Canadian and six In-
dians left by canoe on April 19. On April 20, he arrived
at Fort Vancouver, on the north shore of the river, which
became the base for his excursions.

He gathered plants in the neighborhood until June 20,
having collected almost 300 specimens, which he lists and
briefly describes in his journal[6]. Then, he hitched a
boat-ride further up the Columbia River with some Hud-
son’s Bay employees. In a couple of days and 46 miles,
they passed what Lewis and Clark had named “The
Grand Rapids” (which are now lost, slightly above the
Bonneville Dam). Traveling on, they reached what Lewis
and Clark had named “The Great Falls” (later called the
Celilo Falls, which were lost in 1957 with the construction
of the Dalles Dam). He wrote in his journal[7],

From the Grand Rapids to the Great Falls (70 miles)
the banks are steep, rocky, and in many places rugged.
The hills gradually diminish in elevation ... .As far as the
eye can stretch is one dreary waste of barren soil thinly
clothed with herbage. In such places are found the beau-
tiful Clarkia pulchella, ... .

He stayed in the area above the Great Falls for about a
month, and collected around 120 specimens. He writes[8]:

During my journey, I collected the following plants,
some very interesting and will, I am sure, amuse the
lovers of plants at home.

and lists about 120 more plants, recommencing with
number 296. In the list is

(329) Clarkia pulchella (Pursh), annual; description
and figure very good; flowers rose color; abundant on the
dry sandy plains near the Great Falls; on the banks of
two rivers twenty miles above the rapids; an exceedingly
beautiful plant. I hope it may grow in England.

He left on July 19,

... in an Indian canoe for the purpose of prosecuting
my researches on the coast, which was in a great measure
frustrated by the tribe among whom I lived going to war
... ,

arriving again at Fort Vancouver on August 5.
Douglas proceeded to dry his plants. He also collected

some seeds from plants in the neighborhood that were
already in the collection but had not earlier gone to seed.
He left on August 19 to go up a tributary of the Columbia
for some more collecting, and returned on August 30. On
September 1 he made a second trip to the Grand Rapids,
again “... to collect seeds of several plants seen in flower
in June and July.” With 499 plants now on his list[9],

Returned on the 13th ... and learned that the vessel
had returned from the North and would be despatched for
England without delay. My time must now be taken up
packing, arranging, and writing for a short time. From
that time till October 3rd employed dividing my seeds and
specimens and finishing transcribing my Journal. Wrote
today to Jos. Sabine, Esq., ... . I am to-morrow morning
to leave here to see my boxes safely place in the vessel.

However, he could not go to the William and Ann, be-
cause he punctured his knee with a nail while packing the
crates. So, he sent them on with instructions for their
care, particularly the chest of seed. The captain sent as-
surances that he would personally call on Mr. Sabine.

The ship left the mouth of the Columbia River on Oc-
tober 25, 1825, in due course rounding Cape Horn. It
arrived at London on April 15, 1826[10], and that is how
Clarkia pulchella seeds first arrived in England.

Addendum: Douglas had more adventures while col-
lecting plants and animals (and sending them back to
England) during 1826. Having wintered over, on March
20, 1827 he embarked on the Columbia River. He was
aiming to reach Hudson Bay, and from there return to
England. With various companions, collecting plants all
the way, he headed first for Kettle Falls, now at the
northeast corner of Washington state. Then, they set
out for the Canadian Rockies on April 18. They reached
the Athabasca Pass, (now at the border between British
Columbia and Alberta, around the middle of the west-
ern edge of Jasper National Park) on May 1. At midday,
while the rest of the group was resting, Douglas became,
it has been suggested, the first mountaineer in North
America[11]:

After breakfast, about one o’clock, being well refreshed,
I set out with the view of ascending what seemed to be the
highest peak on the north ... . The view from the sum-
mit is of that cast too awful to afford pleasure-nothing as
far as the eye can reach in every direction but mountains
towering above each other, rugged beyond all description
... . This peak, the highest yet known in the northern
continent of America, I felt a sincere pleasure in nam-
ing “Mount Brown,” in honour of R. Brown, Esq., the
illustrious botanist, no less distinguished by the amiable
qualities of his refined mind.

He proceeded easterly, through Edmonton, arriving at
the settlement of Norway House on the northern end of
Lake Winnipeg on June 16. He dawdled in the vicinity
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and collected some more plants. Finally, leaving there
on August 18, Douglas arrived at the settlement of York
Factory on the eastern end of Hudson Bay on July 28,
1827, concluding his journal with:

I sailed from Hudson’s Bay on September 15th and ar-
rived at Portmouth on October 11th, having enjoyed a
most gratifying trip.

D. Brown

As shall be seen, pollen from Clarkia pulchella flowers,
grown from the seeds shipped out by Douglas, were put
to use by Robert Brown as soon as possible. Biographies
of Robert Brown (1773-1858), a comprehensive book[12]
as well as short and web-accessible sketches[13][14][16]
are available, so only a brief outline shall be given here.
Already in his teenage years, Brown had a strong interest
in botany. While attending medical school at the Uni-
versity of Edinburgh, he collected plants in Scotland, and
befriended people of like interest. He left the university
in 1793 without his medical degree and joined the Army
in 1794. He was sent in 1795 to serve in Ireland as a
surgeon’s mate. He spent as much of his time there as he
could spare doing botany. He visited London in the sum-
mers of 1798 and 1799, networking with other botanists.

At the time, Joseph Banks (1743-1820) was the most
influential botanist in England. His initial fame was
gained from plant collecting during Captain Cook’s first
expedition (1768-1771). Banks was president of the
Royal Society from 1778 until his death. (He appears as
a colleague of Stephen Maturin in the novels of Patrick
O’Brian!). He convinced the Admiralty of the desirabil-
ity of charting the coast of Australia and collecting plants
there. Having heard good things about Brown, Banks
wrote him a letter on December 12, 1800, offering the
post of naturalist on the expedition. Brown accepted
with alacrity. He obtained leave from his military duties,
traveled to London, and became acquainted with Banks.
Brown also met Ferdinand Bauer (1760-1826), a superb
botanical illustrator, who was to accompany him on the
trip. Brown prepared diligently. The ship Investigator
set sail for Australia on July 18, 1801. Brown had many
adventures as an indefatigable collector of plants (but
also of animals, birds, fishes, reptiles, insects and rocks).
He returned on October 7, 1805, having found thousands
of new species of plants.

Brown’s work had been so impressive that, before the
year ended, he was chosen to be librarian of the Lin-
nean Society. With salary and free lodgings in prospect,
he quit the army. Also, Banks convinced the Admi-
ralty to continue Brown’s salary, and that of Bauer, as
they codified their work. In the next five years, Brown
wrote ground-breaking papers on plant classification, of-
ten aided by microscopic observations. In 1810 he pub-
lished Volume 1 describing his Australian plants. The
projected Volume 2 was never published, because the first

volume was a financial failure, but much of the remaining
material later emerged in various papers. In that year,
Banks hired him as the librarian and curator of Banks’s
herbarium. Together with his arrangement with the Lin-
nean Society, this made him financially secure (the Ad-
miralty stipend ended the following year).

Brown was extremely active professionally, at the hub
of botanical research in England, and was increasingly
admired throughout Europe, not least because of his re-
markably perceptive microscopy. A forte was character-
izing plants by the nature of their reproductive organs
and seeds, a scheme that was superior to the Linnean
system then prevalent.

Banks died in the middle of 1820. He left his library,
herbarium, an annuity and eventually the lease to his
house to Brown, with the stipulation that Brown take
up residence there. The botanical materials were to go
eventually to the British Museum, subject to Brown’s
convenience. He leased half of the house to the Linnean
society for their collections and use, and soon resigned
from his paid Linnean positions. In 1825 he declined
an offer of the Linnean Society, writing that one who
occupied the proffered position of Secretary ... should
unquestionably have the habits of a man of business and
be perfectly regular in matters of correspondence. That I
do not possess such habits at present is but too well known
to all my friends and whether I should ever acquire them
is at least very doubtful.

Nonetheless, despite his protestation of lack of business
acumen, his negotiations with the Trustees of the British
Museum for the transfer of Banks’s library, which took
more than a year, concluded in September 1827 with sat-
isfying success. He was to become the underlibrarian in
charge of the collection. There was a good stipend for
two days work a week and a full-time paid assistant John
Joseph Bennett (1801-1876) who became a friend and
eventually Brown’s executor. The terms were such that
he retained his rooms, stipend from Banks and control
of Banks’s herbarium. During these negotiations, Brown
was conducting the investigations of concern here.

III. JIGGLY

When the seeds Douglas had shipped out arrived at the
Horticultural Society in early spring 1826, they came un-
der the purview of John Lindley (1799-1865)[17]. Lindley
had been mentored by Brown: in 1818, Brown gave Lind-
ley a job that lasted a year and a half working in Banks’s
herbarium[12]. In 1821, the Horticultural Society leased
33 acres in Chiswick for an experimental garden[18]. The
next year, Sabine hired Lindley to be assistant secretary
of the garden, to superintend the collection of plants and
their propagation.

The Natural History Museum in London (which spun
off from the British Museum in 1881) has an extensive
collection of Brown’s papers. In box 24 of Brown’s “Slips
Catalogue,” sheet #224 is labeled Clarkia[19]. Directly
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underneath, Brown’s (not always legible) handwriting
reads Hort Soc (Horticultural Society) Horticult (illeg-
ible) Chiswick (illegible), and the next line reads occident
(western) Amer (illegible) by D Douglas. Thus, Brown
certifies that his Clarkia pulchella flowers came directly
from the Horticultural Society’s garden. Flowers or seeds
could be distributed to Fellows of the Society, but Brown
was not one. Therefore, he likely received Clarkia flowers
privately from John Lindley[20].

Sheet #224 contains entries dated June 12, 1827 and
June 13, 1827. The first entry begins by describing the
pollen[21]:

The grains of Pollen are subspherical or orbiculate-
lenticular (circular-lens shaped) with three equidistant
more pellucid and slightly projecting points so that they
are obtusely triangular. ...

Figure 1 shows the pollen viewed under a microscope.
Figure 2 is an electron microscope picture of the pollen.
It looks vaguely like a pinched tetrahedron with the
longest dimension around 100 microns[22] and “pores”
at three vertices.

FIG. 1: Clarkia pulchella pollen imaged by a microscope at
x400.

The entry turns to the contents of the pollen:

The fovilla or granules fill the whole orbicular disk but
do not extend to the projecting angles. They are not
spherical but oblong or nearly cylindrical. & the parti-
cles have a manifest motion. This motion is only visible
to my lens which magnifies 370 times. The motion is
obscure but yet certain. ...

Thus began the research that resulted in Brown’s won-
derfully discursive paper[23], dated July 30, 1828, and
entitled:

A brief Account of Microscopical Observations made in
the Months of June, July and August 1827, on the Parti-

FIG. 2: Clarkia pulchella imaged by an electron microscope.

cles contained in the Pollen of Plants; and on the general
Existence of active Molecules in Organic and Inorganic
Bodies.

It was first privately published as a pamphlet, treated as
a preprint and given to various colleagues. However, it
was published in September.

This is a superb example of a researcher of unusual
capability and energy delineating his thought processes.
Some of its 53 paragraphs shall be treated here in some
detail, especially the first nine that describe Brown’s in-
teraction with Clarkia and the start of a broader inves-
tigation.

A. Brown’s Microscopes

The paper begins with a description of his microscope
in the first paragraph:

The observations, of which it is my object to give a
summary in the following pages, have all been made with
a simple microscope, and indeed with one and the same
lens, the focal length of which is about 1/32 of an inch.

Brown expands in a footnote:

This double convex Lens, which has been several years
in my possession, I obtained from Mr. Bancks, optician,
in the Strand. After I had made considerable progress in
the inquiry, I explained the nature of my subject to Mr.
Dollond, who obligingly made for me a simple pocket mi-
croscope, having very delicate adjustment, and furnished
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with excellent lenses, two of which are of much higher
power than than that above mentioned. ...

However, he added that he only used the Dollond micro-
scope ... in investigating several minute points.

A well known rule of thumb is that a near object is
best seen at a distance of 10 inches. This puts the mag-
nification Brown used at ≈ 10/f = 320, which is not far
from Brown’s own estimate of ×370 cited above.

The whereabouts of this lens is not known. There does
exist a pocket microscope of Brown’s made by Bancks, in
a box of dimensions less than 1”x2”x5”. Upon Brown’s
death, Bennett gave this microscope ... which he was in
the daily habit of using at the museum ...[24] to a mutual
friend, and it has ended up at the Linnean Society. It has
a complete set of lenses, the strongest of which has mag-
nification ×170. Bennett gifted another Bancks micro-
scope, used by Brown at home, whose strongest lens has
magnification ×160: this is now in the museum at Kew
Gardens. These are all the extant microscopes that can
definitively be traced to Brown. There is also a pocket
microscope at the University Museum of Utrecht, made
by Dollond, with highest power lenses ×330 and ×480
magnification that associated documents suggest bears a
relationship to Brown’s Dollond microscope[24].

The Linnean Society microscope’s ×170 lens has been
conjectured by Ford to be the one Brown used for his
Brownian motion observations[24][25], and the micro-
scope at Utrecht is thought to be essentially identical
to Brown’s microscope made by Dollond. Ford proposed
that Brown meant the working distance of the lens (the
distance between the front of the lens and the viewed ob-
ject) when he stated that the focal length was 1/32 inch.
Ford also surmised that the above-mentioned extant mi-
croscopes represent Brown’s full collection. If so, since
the ×170 lens is the strongest Bancks lens extant, it is
the best candidate. In addition, Brownian motion can
be observed with it[14], albeit of milk fat globules[15].
Indeed, as Brown asserted in his footnote, the ×170 lens
is much less powerful than the Utrecht ×330 and ×480
Dollond lenses.

However, these conjectures are doubtful.
The ×170 lens (which therefore has a focal length of

1/17 inch) was measured by Ford to have a working dis-
tance of 1.5mm=1/17inch, not 1/32inch[25]. [Regardless,
there must be some mistake. Half the lens thickness is
the difference between the working distance and the focal
length of the lens (which is essentially the object distance,
for a magnifying glass). If both these numbers are 1/17
inch, this implies that half the lens thickness is 0!]

Moreover, Brown had many microscopes. Upon his
death, the Gardener’s Chronicle magazine reported that
at least 9 microscopes of his were sold, some made by
Bancks[36].

Brown likely had two Dollond lenses of power much
larger than ×370, as he said in his footnote. The
French botanist Alphonse de Candolle (1806-1893) vis-
ited Brown in 1828. He wrote to his famous botanist

father that Brown had showed him the motion of gran-
ules from pollen, and added[27]:

For that he only works with the simple lenses. But
it is true that the lenses of English manufacture are as
strong as many compound microscopes, because they mag-
nify up to 800 and 1000 times. Mr. Brown has had 30
or 40 made by Dollond and other famous opticians and
he chooses from them 5 or 6 in number, with which he
usually works. He obtains thus the effect of an ordinary
microscope with the clarity and the reliability of a simple
lens.

This is supported in a remark contained in an adden-
dum by Brown entitled Additional Remarks on Active
Molecules written a year later[23]. Brown says that the
new work described there

... employed the simple microscope mentioned in the
Pamphlet as having been made for me by Mr. Dollond,
and of which the three lenses that I have generally used,
are of a 40th, 60th and 70th of an inch focus.

Thus, he says he has lenses of power ×600 and ×700,
which agrees with his footnoted remark, two of which
are of much higher power than the ×370 lens.

Brown was the most astute microscopist of his day, and
known to be extremely cautious with his statements. We
believe he should be taken at his word: he used a ×370
lens.

These are remarkably small lenses, with surface radii,
thickness and diameter comparable in size to the focal
length. Such lenses are like those of Leeuwenhoek (1632-
1723)—a delightful recent paper describes grinding such
a lens[28].

Brown apparently preferred simple microscopes rather
than compound microscopes. Charles Darwin (1809-
1882) visited Brown in 1831, just before the voyage of
the Beagle, to consult about what microscope to take.
He wrote in his “Life and Letters,” I saw a good deal
of Robert Brown ... He seemed to me to be chiefly re-
markable for the minuteness of his observations and their
perfect accuracy. .... He was advised to take a Bancks
single lens microscope on the voyage, which he did. This
microscope is at Darwin’s home, Down House in Kent.

The way to construct a compound microscope that was
superior to a single lens was not well known at the time,
because of spherical aberration. Joseph Jackson Lister
(1786-1869) (father of the surgeon Joseph Lister who in-
stigated antiseptic operations, after whom the mouth-
wash Listerine was named) discovered how to minimize
spherical aberration in compound microscopes, by ap-
propriately separating lens elements. He commissioned
construction of such a microscope in 1826, but only pub-
lished the concept in 1830[29].

As is discussed in detail later in this paper, a sin-
gle lens, with appropriate choice of the exit pupil, can
have negligible spherical aberration. In addition, a single
lens microscope is more portable. Darwin only replaced
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his Beagle microscope, which served the dual purpose of
observation and dissection, by two microscopes, a com-
pound microscope in 1847 and a dissecting microscope of
his own design in 1848. Concerning the latter, he wrote
to a friend: ... I have derived such infinitely great ad-
vantage from my new simple microscope, in comparison
with the one which I used on the Beagle ... . I really feel
quite a personal gratitude to this form of microscope &
quite a hatred to my old one.[30]

B. Observing Clarkia pulchella

The second paragraph mentions a paper Brown had
published in 1826, which

... led me to attend more minutely than I had before
done to the structure of the Pollen, and to inquire into
its mode of action on the Pistillum ...

The pistil, the female part of a flower, consists of a
vase-like object called the style, containing at its bottom
the ovules (immature seeds containing eggs) and a struc-
ture on top called the stigma. Others conjectured that,
when a pollen grain sticks to the stigma, the grain re-
leases the particles it contains, and these somehow travel
down through the style to fertilize the ovules. In his third
paragraph, Brown expresses doubts respecting the mode
of action of the pollen in the process of impregnation.

As explained in the fourth and fifth paragraphs, he had
the idea to look into this too late in the year, past the
time of flowering:

It was not until late in the autumn of 1826 that I could
attend to this subject; and the season was too far ad-
vanced to enable me to pursue the investigation. Find-
ing, however, in one of the few plants then examined,
the figure of the particles contained in the grain of pollen
clearly discernible, and that figure not spherical but ob-
long, I expected with some confidence to meet with plants
in other respects more favorable to the inquiry, in which
these particles, from peculiarity of form, might be traced
through their whole course ... .

I commenced my study in June 1827, and the first
plant examined proved in some respects remarkably well
adapted to the object in view.

Thus Brown explains his selection: among a number of
flowers apparently chosen by chance, Clarkia pulchella
pollen clearly contained oblong particles.

For what follows, note that the male part of a flower,
the stamen, consists of two parts. There is the anther,
which is a sack in which pollen grains develop; it sits on
a stalk called the filament, which conveys nutrients from
the flower to the anther. When the pollen is ripe, it is re-
leased because the anther bursts, splitting longitudinally
(in most cases), a process called dehiscence.

The sixth paragraphs launches the investigation.

This plant was Clarckia pulchella, of which the grains
of pollen, taken from antherae fully grown before burst-
ing, were filled with particles or granules of unusually
large size, varying from 1/4000th to about 1/3000th of
an inch in length, and of a figure between cylindrical and
oblong, ... . While examining the form of these parti-
cles immersed in water, I observed many of them very
evidently in motion ... . In a few instances the parti-
cle was seen to turn on its longer axis. These motions
were such as to satisfy me, after frequently repeated ob-
servation, that they arose neither from currents in the
fluid, nor from its gradual evaporation, but belonged to
the particle itself.

This is the first kind of particle Brown observes, whose
length he estimates at about 6 to 8 microns. This is
worth noting, since observations discussed later in this
paper give these particles shorter lengths. The difference
shall be attributed to the alteration of the image by his
lens, as mentioned earlier.

In the seventh and eighth paragraphs, he notes the
existence of a second kind of particle;

Grains of pollen of the same plant taken from antherae
immediately after bursting, contained similar subcylindri-
cal particles, in reduced numbers however, and mixed with
other particles, at least as numerous, of much smaller
size, apparently spherical, and in rapid oscillatory mo-
tion.

These smaller particles, or Molecules as I shall term
them, when first seen, I considered to be some of the
cylindrical particles swimming vertically in the fluid. But
frequent and careful examination lessened my confidence
in this supposition; and on continuing to observe them
until the water had entirely evaporated, both the cylindri-
cal particles and spherical molecules were found on the
stage of my microscope.

C. Seeing Brownian Motion

We emphasize here that Brown was not observing
the pollen move. He was observing much smaller ob-
jects, which reside within the pollen, move. This is well
known—see for example the excellent pedagogical article
by Layton[31]. Nonetheless, statements that Brown saw
the pollen move are rife[32].

A Clarkia pollen is ≈ 100 µm across[22]. As we shall
shortly show, that is too large for its Brownian motion
to be readily seen. However, fortunately for Brown, the
contents of the pollen are just the right size for their
motion to be conveniently observed.

To understand this, one may employ Einstein’s famous
equation for the mean square distance x2 travelled by
a sphere of radius R in time t, in one dimension, in a
liquid of viscosity η at temperature T, Eq. (A6) with



8

Eq. (B17):

x2 =
2kT t

6πηR
,

where k is Boltzmann’s constant.
As shown following Eq. (A6), the mean distance trav-

elled is |x| ≈ .80
√

x2. For an oblong object, as discussed
in Appendix B, the equation is the same except that R
is to be replaced by an effective radius Reff. For exam-
ple, for an ellipsoid of revolution whose length is 2a, with
maximum cross-section a circle of diameter a, Reff lies
approximately in the range .6a−.7a, depending upon the
angle between the direction of motion and the long axis
(Eqs. (B18), (B19)).

Similar results are to be expected even for a weirdly-
shaped object like Clarkia pollen. For the pollen and its
contents, one may estimate using the expression

|x| ≈ .80

√
2kT t

6πηReff
≈ 5.2× 10−7

√
tsec

Reff-cm

≈ .52

√
tsec

Reff−µm

µm, (1)

where a micron 1 µm = 10−3 mm. In Eq. (1), T =
20◦C=293◦K, and the viscosity coefficient for water at
this temperature, η = .01 gm/cm-sec, were used.

TABLE I: |x| in µm for values of Reff in µm and t in sec.

Reff .50 1.0 1.5 2.0 2.5 3.0 3.5 4.0 50

t=1 .74 .52 .43 .37 .33 .30 .28 .26 .07

t=30 4.1 2.9 2.3 2.0 1.8 1.6 1.5 1.4 .41

t=60 5.7 4.0 3.3 2.9 2.6 2.3 2.2 2.0 .57

Table I follows from Eq. (1). The reason for choosing
t = 1 sec is that the little jiggles on the time scale of
about a second are what catches the eye.

TABLE II: |θ| in degrees for values of Reff in µm and t in sec.

Reff .50 1.0 1.5 2.0 2.5 3.0 3.5 4.0 50

t=1 74 26 14 9 7 5 4 3 .01

t=30 402 142 78 50 36 27 22 18 .4

t=60 570 201 110 71 51 39 31 25 .6

[For later use, we have appended here a similar table
for the mean angle |θ|, Eq. (A8) and Eq. (B26):

|θ| ≈ .80

√
2kT t

8πηR3
eff

≈ 26

√
tsec

R3
eff−µm

degrees, (2)

where Reff for rotation about the two ellipse axes is given
by Eqs. (B27), (B28).]

It is considered that the human eye is unable to resolve
angles less than 1 arcminute≈ 2.9 × 10−4 radians[33].
At a distance of 25 cm, this means a displacement less
than 73 µm cannot be seen by the eye. This implies
that less than a 73/370 ≈ .2 µm displacement cannot be
seen by the eye with the help of a lens of magnification
×370. Thus, by this rough criterion (e.g., the perception
of motion may involve an altered criterion, illumination
matters, and diffraction and aberration of the image has
not been taken into account), from Table 1, the pollen
contents with Reff < 4 µm could be seen to move in 1
sec, but not the pollen with Reff ≈ 50 µm.

D. Observing Pollen Of Other Plants

In paragraph 9, Brown starts to look at the pollen
of other plants, to see if their contents are similar and
behave similarly. First, he looks at plants which have a
similar classification. In the family Oenothera (evening
primrose), Clarkia is a genus and C. pulchella is a species.
Another genus in the same family is Onagraceae, which
Brown calls Onagrariae:

In extending my observations to many other plants of
the same natural family, namely Onagrariae, the same
general form and similar motions of particles were as-
certained to exist, especially in the various species of
Oenothera, which I examined. I found also in their grains
of pollen taken from the antherae immediately after burst-
ing, a manifest reduction in the proportion of the cylin-
drical or oblong particles, and a corresponding increase
in that of the molecules, in a less remarkable degree, how-
ever, than in Clarckia.

In paragraph 10, Brown remarks that this

... reduction in that of the cylindrical particles, be-
fore the grain of pollen could possibly have come in con-
tact with the stigma, — were perplexing circumstances
in this stage of the inquiry , and certainly not favorable
to the supposition of the cylindrical particles acting di-
rectly upon the ovulum; an opinion which I was inclined
to adopt when I first saw them in motion. ...

In paragraph 11 he is off and running, looking at a
variety of flowering plants:

In all these plants particles were found, which in the
different families or genera varied in form from oblong
to spherical, having manifest motions similar to those
already described ... In a great proportion of these plants
I also remarked the reduction of the larger particles, and a
corresponding increase of the molecules after the bursting
of the antherae ...

Prior to discussing the next paragraph, we should em-
phasize that, so far, Brown had not observed the particles
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or granules moving while they were within the Clarkia
pulchella pollen grain. As he says in paragraphs 6 and 8,
he observed them moving in water.

Unfortunately, he doesn’t say how they manage to get
out of the pollen grain after the grains are put in water.
As will be discussed in more detail in Section IV, pollen
grains in water—in vitro—may burst open, the contents
streaming out under pressure (called turgor). (What
happens naturally—in vivo—will be discussed there too.)
Moreover, the particles within Clarkia pulchella pollen
seem to be too packed together to move. And, we have
observed that the fluid in which they are packed is so vis-
cous that their motion is impeded when they do emerge.
However, paragraph 12 says:

In many plants, belonging to several different families,
but especially to Gramineae, the membrane of the grain
of pollen is so transparent that the motion of the larger
particles within the entire grain was distinctly visible; ...
and in some cases even in the body of the grain in Ona-
grariae.

So, Brown was able to see particles move within some
pollen, but he does not specifically include Clarkia pul-
chella. Sometimes Brown is said to have observed par-
ticles moving within the pollen, and the implication
is that this was what Brown first observed, which is
incorrect[34][15].

The next two paragraphs consider plants with varied
kinds of pollen but similar results. Then comes para-
graph 15:

Having found motion in the particles of all the living
plants which I had examined, I was led next to inquire
whether this property continued after the death of the
plant, and for what length of time it was retained.

Paragraph 16 reports that, from plants dried or preserved
in alcohol, for a few days, to a year, to more than twenty
years, to more than a century, the pollen ... still exhibited
the molecules or smaller spherical particles in consider-
able numbers, and in evident motion, ... .

He next has the idea to look at plants that reproduce
by spores: mosses and the horsetail (Equisetum). He
finds within the moss spores, and sitting on the surface
of the Equisetum spores, ... minute spherical particles,
apparently of the same size with the molecule described
in Onagrariae, and having equally vivid motion on im-
mersion in water ; ... .

E. Observing Organics

Then, as described in paragraph 19, an accident oc-
curred. On bruising a spore of Equisetum, ... which
at first happened accidentally, I so greatly increased the
number of moving particles that the source of the added
quantity could not be doubted. This leads him to bruise ...
all other parts of those plants ..., with the same motion

observed.
Therefore, the motion had nothing to do with plant

reproduction. He says:

... My supposed test of the male organ was therefore
necessarily abandoned.

From this comes a hypothesis. The naturalist George-
Louis Leclerc, Comte de Buffon (1707-1788), had pro-
posed an atomic-style hypothesis, that there are elemen-
tary “organic molecules” (hence Brown’s name for the
smaller particles he observed) out of which all life is con-
structed. Brown signs onto this in paragraph 20:

... I now therefore expected to find these molecules in
all organic bodies: and accordingly in examining the var-
ious animal and vegetable tissues, whether living or dead,
they were always found to exist; and merely by bruising
these substances in water, I never failed to disengage the
molecules in sufficient numbers to ascertain their appar-
ent identity in size, form, and motion, with the smaller
particles of the grains of pollen.

Paragraph 21 contains this charming observation:

... I remark here also, partly as a caution to those who
may hereafter engage in the same inquiry, that the dust
or soot deposited on all bodies in such quantity, especially
in London, is entirely composed of these molecules.

He now looks at things that were once organic, gum-
resins, pit coal, then fossil wood. He then thinks of min-
eralized vegetable remains and looks at silicified wood,
with similar results. Paragraph 22 concludes:

... But hence I inferred that these molecules were not
limited to organic bodies, nor even to their products.

F. Observing Inorganics

So, (paragraphs 23-32) ... to ascertain to what extent
the molecules existed in mineral bodies became the next
object of inquiry. .... Starting with ... a minute fragment
of window-glass, from which when merely bruised on the
stage of the microscope ..., he tries all kinds of minerals,
rocks, and metals, even ... a fragment of the Sphinx !

... in a word, in every mineral I could reduce to a
powder sufficiently fine to be temporarily suspended in
water, I found these molecules more or less copiously: ...

When he looks at objects that are not spherical, such as
fibers, he conjectures that they are composed of a number
of molecules. He heats or burns wood, paper, cloth fiber,
hair, quenches them in water and finds “molecules” in
motion.
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G. Brown’s Summary of Observations on
Molecules

Paragraphs 33-37 summarize, with commendable cau-
tion:

There are three points of great importance which I was
anxious to ascertain respecting these molecules, namely,
their form, whether they are of uniform size, and their
absolute magnitude. I am not, however, entirely satisfied
with what I have been able to determine on any of these
points.

As to form, I have stated the molecule to be spherical,
and this I have done with some confidence; ...

He explains that he judged the size of bodies ... by
placing them on a micrometer (a glass slide with lines
ruled on it) divided to five thousandths of an inch ... .

The results so obtained can only be regarded as approx-
imations, on which perhaps, for obvious reason, much re-
liance will not be placed. ... I am upon the whole disposed
to believe the simple molecule to be of uniform size, ... its
diameter appeared to vary from 1/15,000 to 1/20,000 of
an inch.

So, with his microscope, he estimates the molecule size at
from 1.7 to 1.3µm. A footnote adds While this sheet was
passing through the press ... he asked the lens maker
Dollond to look at Equisetum spores, whose surface he
had earlier noted released “molecules,”

... with his compound achromatic microscope, having
at its focus a glass divided into 10,000ths of an inch, upon
which the object was placed; and although the greater
number of particles or molecules seen were about 1/20,
000 of an inch, yet the smallest did not exceed 1/30,000th
of an inch.

So, with Dollond’s microscope, these particular
molecules were mostly 1.3µm, with some estimated at
.85µm.

Brown prudently concludes,

I shall not at present enter into additional details, nor
shall I hazard any conjectures whatever respecting these
molecules ... .

H. Brown’s Concluding Remarks

In the final paragraphs of the paper, Brown returns ...
to the subject with which my investigations commenced,
and which was indeed the only object I originally had in
view ..., namely whether the larger particles acted upon
the ovule. My endeavors, however, to trace them, ... was
not attended with success .... He returned to this prob-
lem, with more success, a few years later (Section IV).
The paper ends with establishing his priority. He notes:

The observations, of which I have now given a brief ac-
count, were made in the months of June, July and Au-
gust, 1827. He mentions people to whom he showed the
phenomenon (he soon traveled to Europe, and demon-
strated it there) and people who had made related ob-
servations in the past (the phenomenon was first seen by
Leeuwenhoek, and remarked upon by many later micro-
scopists —see comments by Nelson[16]) to but fell short
of his results in some way .

Brown issued an addendum the following year[23], Ad-
ditional Remarks on Active Molecules,

... to explain and modify a few of its statements, to
advert to some of the remarks already made, either on
the correctness or the originality of the observations, and
to the causes that have been considered sufficient for the
explanation of the phenomena.

He rejects the notion that the molecules are animated,
he regrets having introduced hypotheses such as larger
objects being made out of molecules, distances himself
from the notion that the molecules are identically sized,
rejects some explanations of the motion. He says they
are ... motions for which I am unable to account.

He describes an experiment designed to put to rest the
idea that it is evaporating water, or interaction among
the particles, which produces the motion, He shakes a
mixture of oil and water that has previously been filled
with particles, obtaining small drops of water surrounded
by oil, some of which contain only one particle, and notes
that the motion is unabated and continues indefinitely
since the water does not evaporate.

He concludes once again by ... noticing the degree in
which I consider those observations to have been antici-
pated, and discussing other people’s earlier work.

IV. BOTANY

A. Early Pollen Research

Unbeknownst to Brown, the mechanism of fertilization
of the ovule by pollen he had been looking for had been
observed by accident in 1822 by the Italian optical de-
signer, astronomer and botanist Giovanni Battista Amici
(1786-1863). Amici was looking at a hair on a stigma[35]:

I happened to observe a hair with a grain of pollen at-
tached to its tip which after some time suddenly exploded
and sent out a type of transparent gut. Studying this new
organ with attention, I realized that it was a simple tube
composed of a subtle membrane, so I was quite surprised
to see it filled with small bodies, part of which came out
of the grain of pollen and the others which entered after
having traveled along the tube or gut.

Thus, what is now called the pollen tube was discovered.
Brown became aware of this, and launched an investiga-
tion of the germination of pollen grains in orchids in 1831.
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He was the first to realize that contact with the stigma
causes the pollen to germinate, and he observed the par-
ticles from within the pollen flowing into the pollen tube.
(Ironically, if in his 1827 work he had decided to observe
pollen in vivo, instead of in vitro, he likely would have
seen the pollen tube, pursued that, and his Brownian
motion observations might never have taken place.) By
1833, he had published his observations that the pollen
tube reaches and penetrates the ovule. Brown also was
the first to insist upon the importance of insects in pol-
lination[? ].

During this 1831 work, Brown noticed a structure
within cells belonging to an orchid leaf’s epidermis, its
outer layer. Characteristically he first looked at the inter-
nal cells of the plant and made the same observation, and
then studied a myriad of other plants, with the same re-
sult. Brown had found the cell nucleus, which he named
(from the latin word for “little nut”). He also specified
that the pollen grain contains a nucleus. [One wonders
if the term arose in physics due to Brown. Michael Fara-
day (1791-1867) used it to describe the center of the atom
in 1844: Faraday knew Brown, lectured about Brownian
motion in 1829, and letters are extant from Faraday to
Brown. The term was adopted by Ernest Rutherford in
1912: one wonders how that came about.]

As we have seen, a pollen grain also contains amylo-
plasts and spherosomes (starch and fat organelles). Their
nature became known within a decade after Brown’s
publications, but much was still unknown and wrongly
conjectured. The two types of particles seen by Brown
were described by John Lindley (who earlier had a
falling out with Brown, following an article Lindley wrote
that was construed to attribute some of Brown’s early
work to Bauer) in his 1848 book “An Introduction to
Botany”[37]:

In consequence of their manifest motion it has been
conjectured that the longer particles of the fovilla were
the incipients of the embryo, and it is by the the in-
troduction of one or more of these into the ovule that
the act of impregnation is accomplished by the deposit
of a rudimentary embryo in the ovule. [Wrong!] But
both Fritzsche and Mohl agree in considering many of
the smaller particles of the fovilla as minute drops of oil:
[Right!] the molecular motion has been ascribed to cur-
rents in the fluid, in which the fovilla is suspended, and
which, according to Fraunhofer, no precautions can pos-
sibly prevent; [Wrong!] and, what is more important, the
larger particles become blue upon the application of io-
dine, without however losing their property of motion, as
Fritzsche has shown: they are therefore starch.[Right!]

Lindley cites Fritzshe’s and Mohl’s work, published in
1833 and 1837, respectively.

B. Pollen Physiology

A pollen grain consists of an elaborate, three-layered
cell wall surrounding a single, living cell[38], called a tube
cell, because it can grow into a pollen tube. The outer
layer of the pollen wall is sculptured and ornamented.
It consists mainly of a tough, water-insoluble, fatty sub-
stance called sporopollenin[39]. Because of its thickness,
ornamentation and chemical nature, the pollen grain wall
is often optically opaque, and many of the internal con-
tents of fresh pollen grains remain elusive using a light
microscope. (However, as we have seen, the oblong amy-
loplasts of C. pulchella can be seen through the pollen
wall, which led Brown to start working with that plant.)
At particular locations, the cell wall is modified to form
one or more apertures or pores. (C. pulchella, elegans
and amoena have three pores). When pollen lands on
a flower’s stigmatic surface, the pollen absorbs water
through the pores. Molecules (such as amino acids, oils
and sugars[40],[41]) of the stigma induce the pollen to
germinate, with a pollen tube emerging through one of
these pores. When, in the laboratory, pollen grains are
more uniformly surrounded by an artificial incubation
medium, several tubes may emerge from a single pollen
grain.

In spite of opacity of a pollen grain’s cell wall, ultra-
structural studies with an electron microscope reveal the
tube cell contents[42]. There is a centrally located nu-
cleus surrounded by the cytoplasm, which consists of a
viscous fluid and its contents, membrane-bound struc-
tures called organelles (little organs). These organelles
include amyloplasts (which store starch), spherosomes
(which store lipids), numerous very small ribosomes
needed for protein synthesis and a structure called an
endoplasmic reticulum, which is involved in transporting
proteins.

A small lens-shaped cell, the generative cell, is also
found in the cytoplasm of the tube cell. This genera-
tive cell is passively transported within the elongating
pollen tube and ultimately divides to form two non-
motile sperm. The pollen tube passes through the stigma
and down the style, and reaches an ovule. The ovule is
surrounded by integuments (a layer that will become the
outer coating of the seed) pierced by a hole called a mi-
cropyle. The pollen tube passes through the micropyle,
and enters the ovule. The ovule contains an egg cell, as
well as a neighboring cell called the central cell. When
the pollen tube arrives in the vicinity of the egg, a pore
forms at the tip of the pollen tube, which bursts, and
the two sperm are released[43]. A double fertilization is
achieved: one sperm fertilizes the egg to form the embryo
(seedling), and the other sperm nucleus unites with the
nucleus of the central cell to form a unique nutritive tis-
sue, the endosperm, which will become the food for the
embryo or seedling.

Within a few minutes of landing on the receptive stig-
matic surface of the flower (or upon being placed in
an incubation medium), respiratory activity[44] (oxygen–
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dependent reactions that create the energy rich molecule
ATP which is the energy currency of the cell) and pro-
tein synthesis[45] are initiated within the tube cell. By
15 minutes, RNA synthesis has begun and, even when
this RNA synthesis is blocked experimentally, the germi-
nation and early growth of the pollen tube proceeds[46].
This suggests that the RNA required for the early phases
of germination and tube growth is preformed in the
pollen tube cell and is ready for utilization.

Ultrastructural studies of pollen germination and tube
growth show that in the few minutes before emergence of
the pollen tube, structures called Golgi bodies are acti-
vated. These accept proteins from the endoplasmic retic-
ulum and bundle them into more complicated molecules.
These molecules are shipped out (so to speak) in packages
called vesicles[47], produced by the Golgi bodies. The
vesicles migrate and fuse locally with the pollen tube’s
boundary layer, called the plasma membrane, to form
the growing tip of the pollen tube. As they fuse with
the plasma membrane, the vesicles release their contents
of cell wall material that contribute to the lengthening
pollen tube. They also release enzymes that are believed
to help dissolve a pathway for the pollen tube through
the stylar tissue of the flower’s pistil[48],[49]. The starch
and lipid, stored in the amyloplasts and spherosomes, re-
spectively, are presumably utilized as energy sources and
provide raw materials for the construction of new cell
wall material and new plasma membrane during pollen
tube elongation.

When pollen grains of many plants are placed in water
for microscopic examination, they often will germinate
and form a short tube, but then they frequently rupture,
to release the cytoplasmic contents of the tube cell into
the water. As the cytoplasmic contents disperse into the
water, the more numerous and larger amyloplasts and
spherosomes are seen. Other organelles are too small
(ribosomes are about .02µm) to be seen with the light
microscope or too few (nucleus) to be easily spotted.

Jost[50] first suggested that, during pollen germina-
tion and pollen tube growth, sugar plays the role of os-
motically regulating the swelling and bursting of pollen
grains and tubes. However, Bilderback[51] demonstrated
that the pollen grains of some plants do not require
sugar to stabilize pollen growth and tube elongation.
Schumucker[52] recognized that boron plays an active
role during pollen tube growth. Its physiological be-
havior remained unknown until Dickinson[53] found that
boron binds in a reversible manner to growth-related sites
in the pollen tube. Calcium and potassium[54],[55],[56]
also have been found to be essential for stable growth of
pollen tubes. Weiseseel and Jaffe[57] were able to show
that potassium enters the tips of actively growing pollen
tubes. The directed growth of the pollen tube to the
plant egg may be due to a gradient of calcium, potas-
sium, hydrogen and chloride within the flower’s pistil,
extending from the stigma to the egg [58],[59]. The de-
tails of pollen tube evolution are an active subject of
research[60]. Observation of pollen tube growth makes

FIG. 3: Clarkia amoena pollen under the microscope ×400

an engaging student lab[61].
Artificial pollen incubation media did not begin to be

formulated until the beginning of the twentieth century.
Thus, Brown put pollen into water, observed the con-
tents of ruptured pollen grains, and discovered Brownian
motion instead of (rediscovering) the pollen tube.

V. MICROSCOPY

As mentioned in the Introduction, this section is writ-
ten in the first person.

Clarkia pulchella, variously called ragged robin,
elkhorn, pinkfairies and deerhorn (because of its four
three-pronged petals), is native to western North Amer-

FIG. 4: Clarkia elegans pollen under the electron microscope.
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ica. It can be found growing wild in parts of
British Columbia, Idaho, Montana, South Dakota and
Washington[62]. Indeed, I observed some sent to me that
grew wild near Missoula, Montana. However, a number
of companies sell Clarkia pulchella seeds[63], along with
seeds of Clarkia amoena (also called farewell-to-spring),
which grows wild in California, Oregon and Washing-
ton, and seeds of Clarkia elegans (also called unguiculata,
mountain garland) which grows wild in California. Seed
packets sell for just a few dollars. (Other Clarkia species,
of which 41 are known[64], are sold less frequently).

A. Growing Clarkia

Seed–growing advice is available on–line and in many
gardening books. Growing seeds indoors under lights is
not hard. Here is one person’s experience, which cer-
tainly can be improved upon. My aim was to do as little
as possible.

There are many seed growing systems available at gar-
dening stores, such as peat pots. I have had good results
with the Lee Valley Self-Watering Seed Starter[65], which
contains 24 compartments, watering via a felt capillary
mat, and a water level indicator. It can be left for about
a week before refilling with water. The mat should be
soaked before using. Lee Valley recommends using a soil-
less mixture containing sphagnum or peat, but I used a
commercial potting soil mix with added nutrients.

A shop light fixture with grow–light bulbs, or even or-
dinary fluorescent bulbs, can be used, with some arrange-
ment to raise the plants or lower the light fixture. How-
ever, I used a commercial stand with grow–lights which
is reasonably priced[66] and has a mechanism for raising
and lowering the fixture. A timer that kept the lights on
perhaps 16 hours a day completed the equipment.

Seeds may be meted out to the compartments from the
seam of a small folded piece of paper. The seeds germi-
nated in about a week to ten days. The bulbs should
be within a few inches of the tops of the plants, else the
plants become etoliated, i.e., spindly from lack of suffi-
cient light. After a few weeks to a month, I transferred
the seedlings to 4” pots, 24 of which fit in a tray (peri-
odically watered)[65]. As the plants grew, I staked them.
Flowers started to bloom after about ten weeks.

B. Qualitative

C. pulchella has four stamens (eight for elegans and
amoena) surrounding the pistil. I used a miniature Swiss
army knife scissors (a nail scissors will do as well) to cut
each filament so the anther fell on a microscope slide. I
used tweezers to hold an anther. If the anther had not
yet burst, I sliced it with a long sharp sewing needle to
reveal the pollen. If it had burst, usually some pollen had
fallen out of the anther and was already on the slide. In
either case, I scraped pollen out of the anther with the

FIG. 5: Desiccated Clarkia pulchella pollen

needle. I enjoyed observing what I was doing through
a low power binocular microscope, though this can be
done without one. C. pulchella pollen are little triangles,
which glowed in the light like diamonds.

I was surprised when I did the same with C. amoena
and C. elegans. I had not known that species of the same
genus could have differently shaped pollen, in this case
hexagons with protuberant lobes on alternate edges (Fig-
ures 3 and 4). The connection between the two shapes is
apparent (see Figure 5) when viewing a dry slide of des-
iccated C. pulchella pollen. Each appears as a membrane
surrounding the C. amoena/C. elegans pollen shape.

A drop of distilled water is put on the pollen on the
slide using a medicine dropper, followed by a cover slip
and then observed. One should follow Brown’s injunc-

FIG. 6: Bursting Clarkia pulchella pollen.
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FIG. 7: Bursting Clarkia elegans pollen.

FIG. 8: Clarkia pulchella pollen contents before dehiscence,
two superimposed photos taken 1 min apart, at ×400. The
scale is 2 µm per division.

tion to observe pollen from anthers either before dehis-
cence (i.e., before the anther has split open, releasing
the pollen) or soon thereafter. Most of the pollen do
not burst in water, and if one waits too many days after
dehiscence to make observations, none may burst, espe-
cially for C. pulchella. As pollen matures in the anther,
its outer membrane may grow more impervious to burst-
ing in water.

When first viewed, particles from the pollen were some-
times seen already on the slide: perhaps the pollen had
been damaged by the needle, or the pollen had rapidly

burst open as soon as the water was applied. I could
also see pollen bursting before my eyes, and the particles
streaming out (Figures 6, 7), like logs released from a
log–jam, usually in fits and starts. The particles at the
log–jam periphery diffuse away from the rest and can be
seen undergoing Brownian motion. The remainder are
packed closely, and the intracellular medium in which
they sit is viscous, so they show little or no Brownian
motion until the log–jam disperses.

C. Quantitative

There are many interesting phenomena one can inves-
tigate. Here are two brief studies, suggestive but by no
means definitive. For the first, we consider the distri-
bution of particle sizes emerging from Clarkia pulchella
pollen before and after dehiscence. For the second, we
consider Brownian motion and Brownian rotation of the
amyloplasts.

1. Observations

An Olympus BX-50 microscope, at ×400 was used. Its
resolution is cited as .45 µm, and its depth of focus as
2.5 µm. A microscope camera and five different computer
applications were employed,.

Fig. 8 shows two superimposed photos of C. pulchella
particles taken 1 minute apart, from pollen before dehis-
cence. The two pictures were enhanced in contrast and
treated differently in brightness and then superimposed,
using the program Photoshop Elements 2. A marvelous
free program, called ImageJ[67], enables precision mea-
surements on photographs. 73 particles in the upper left
quadrant of the viewing area (two time-displaced images
of each) were labeled. Each image’s long axis length, long
axis angle θ, x and y coordinates were measured. ImageJ
puts the results in an Excel worksheet.

Fig. 9 shows a photo of C. pulchella particles from
pollen after dehiscence. 89 particles in the lower left
quadrant were labeled and their lengths were measured.
A graph of number of particles per radius bin (radius
R ≡ 1/2×particle length, bin size =.25 µm) for both
photos appears in Fig. 10.

Qualitatively, this confirms what Brown said. There
are very few spherosomes visible in Fig. 8, taken from
pollen before dehiscence. The appearance after dehis-
cence, in Fig. 9, of many particles of apparent radius.
1µm, the “molecules,” or spherosomes that so excited
Brown, is strikingly apparent. These particles appear as
light or dark, depending upon their location with respect
to the microscope focal plane.

Fig. 10 presents a graph of what is observed in Figs.
8, 9. The distribution of numbers of particles with radii
above 1 µm before and after dehiscence appears to be
the same: these are the amyloplasts. However, there is a
peak in the number of particles with radii less than 1 µm



15

FIG. 9: Clarkia pulchella pollen contents after dehiscence.
The scale is 2 µm per division.

FIG. 10: Number of particles (in a radius bin .25 µm wide)
vs radius in µm.

after dehiscence (and no such peak before dehiscence):
these are the spherosomes.

Quantitatively, there is a discrepancy between Brown’s
observation of the sizes of the amyloplasts and sphero-
somes, and what is depicted here: his sizes are larger.
As we have noted, Brown quotes the amyloplasts as hav-
ing average radius (half the long axis length) R ≈ 3 µm,
with maximum R ≈ 4 µm, whereas with our Olympus

microscope, on average R ≈ 2 µm, with maximum R ≈ 3
µm. And, he quotes the spherosome radii as ranging from
R ≈ .65 µm to R ≈ .85 µm, whereas with our Olympus
microscope, most spherosomes appear to cluster around
R ≈ .5± .05 µm, with maximum size about R ≈ .65± .05
µm.

To resolve this discrepancy in the case of the sphero-
somes, in section VC 2 below, lenses and their effect on
the image of a round object are discussed. Essentially,
due to diffraction, Brown’s lens and the Olympus micro-
scope both enhance the image beyond the actual size of
the object, but the Olympus microscope enhances the
image less than did Brown’s microscope. The theory,
described in section V C 3, is found to be in good agree-
ment with observations, of polystyrene spheres of known
radius, made with the Olympus microscope. Therefore,
in section V C 4, the theory is applied to observations
of spherosomes with the Olympus microscope, enabling
estimation of the spherosome size. Then, Brown’s ob-
servations of the spherosome size enables estimation of
properties of his microscope!

Section V C5 treats the Brownian motion and rotation
evinced in Fig. 8.

Lastly, in section VD, the construction of a ball lens
microscope with power close to that of Brown’s lens is
presented. Aided by a picture of amyloplasts taken with
it, the amyloplast size discrepancy is discussed.

FIG. 11: Airy function intensity IA(x) vs x.
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2. Lenses

Interestingly, Brown’s hypothesis and conclusion, of
the ubiquity and uniformity of the “molecules,” although
wrong, was so stimulating to him that it led to his fa-
mous discovery. As mentioned in the Introduction, when
he was viewing objects smaller than the resolution of his
lens, diffraction and possibly spherical aberration pro-
duced a larger, uniform, size[68].

We now discuss this further, summarizing mathemat-
ical results given in Appendices F, G. The main result
is Fig. 12, which will enable us to find the radius a of
a spherical object from the larger radius R of the image
observed through a lens or microscope. The theory shall
be compared to observations of polystyrene spheres made
with the Olympus microscope. Then, the results shall be
applied to the spherosome size discrepancy .

Also, using these ideas, we shall attempt a bit of histor-
ical detective work. From information supplied by Brown
about the size of his “molecules,” we can hazard a guess
at the radius b of the circular aperture that backed his
microscope lens, which is called the exit pupil.

For sufficiently small b, a point source of light’s image
is a diffracted intensity distribution, a circular pattern
of light. The intensity as a function of radial distance
r from the lens axis is given by the Airy function, Eq.
(F5):

IA(x) =

[
2J1(x)

x

]2

, (3)

where J1(x) is the Bessel function and x ≡ krb/f . Here,
f is the lens focal length and b/f is called the “numerical
aperture” of the lens. k = 2π/λ, where λ is the wave-
length of the light, traditionally taken for design pur-
poses as green light with λ = .55 µm. This expression
(and those which follow, such as Eq. (4)) give properly
scaled dimensions of the image. Dimensions actually seen
through the lens are larger by a factor of the lens mag-
nification.

The Airy function (3) is graphed in Fig. 11. The
intensity vanishes at the first zero of the Bessel function,
J1(3.83...) = 0. This defines the Airy radius rA. Setting
krAb/f = 3.83 allows one to find the lens’s Airy radius:

rA =
.61λ

b/f
. (4)

Since viewing is subjective, the Airy radius (4) may
not be perceived as the boundary of the Airy pattern
light intensity (the so-called “Airy disc”), but it is not
far off. For consistency with the non–Airy intensity pat-
tern that appears as b is increased, which also fall off
rapidly with distance but does not vanish, we shall de-
fine the light boundary as occurring at 5% of peak value.
Applied to the Airy function, since IA(3.01..) = .05,
this criterion puts the radius of the light boundary at
R ≡ (3.01/3.83)rA ≈ .8rA.

FIG. 12: For an object hole of radius a, R is the image circle’s
radius, defined as where the intensity is 5% of the intensity
at the center of the image circle. rA is the Airy radius.

As b grows, according to Eq.(4), the Airy radius rA

diminishes: this increases resolution. Moreover, as the
aperture grows, more light exits the lens: this increases
visibility. However, eventually as b is increased further,
visibility and resolution start to decrease. The light in-
tensity outside rA grows, and light intensity inside rA

decreases. This is due to spherical aberration: rays at
the outer edge of the exit pupil come to a focus closer to
the lens than do paraxial rays. A design choice, called the
Strehl criterion[70], suggests an optimal choice of b which
keeps spherical aberration at a tolerable minimum while
maximizing visibility: the intensity on the optic axis (in
the image plane that minimizes the observed disc radius)
should be 80% of IA(0) . The intensity shape is then still
close to the Airy distribution. In this case, the image is
described as “diffraction limited”: this shall be assumed
hereafter.

Consider now, instead of a point source, an extended
object, modeled by a hole of radius a illuminated by in-
coherent light. In geometrical optics, for an ideal lens,
each point on the object plane is imaged onto a point on
the image plane. Therefore, there will be a circular image
which appears also to have radius a. But, with an actual
lens, each point in the object plane becomes an Airy disc
in the image plane. These discs add like little spotlights
of radius rA, with centers uniformly distributed through-
out a circle of radius a. Therefore, the image radius R is
larger than a.

Fig. 12 graphs R/rA vs a/rA. This was obtained by
numerical evaluation of Eq.(G1), which gives the net in-
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tensity of the image pattern at any radius in the image
plane. Fig. 12 can be understood as follows.

For small a, a/rA . .25, the centers of the Airy discs
that contribute to the intensity are so close together
that the intensity is essentially the Airy pattern. Thus,
R/rA ≈ .80 as discussed following Eq.(4).

As a/rA grows beyond ≈ .25, R starts to grow as well,
since the Airy disc centers are now spread out over a
non-negligible range. For example, we see from Fig. 12,
for a/rA ≈ .5 that R/rA ≈ 1, and for a/rA ≈ 1, that
R/rA ≈ 1.5.

For very large a/rA, the intensity at the center of the
image circle is contributed mostly by Airy discs whose
own centers lie within an Airy radius of the center. This
is true for points somewhat farther out from the center
so, at the center and to an extent beyond, the intensity
remains essentially constant. But, at distance a−rA from
the center, the intensity starts to drop.

At the “edge” (distance a from the center), the inten-
sity is about half that in the center, because only Airy
discs on the inner side of the edge contribute. The in-
tensity drops off further as the distance from the cen-
ter increases beyond a, reaching 5% of IA(0) at distance
R ≈ a+ rA. Thus (R−a)/rA asymptotically approaches
1.

In the graph of Fig.12, R/rA has its largest value
for a/rA = 4, at which (R − a)/rA ≈ .7. Not
shown on the graph are points {a/rA,≈ (R − a)/rA} =
{8, .8}, {17, .9}, {30, .99}.

3. Polystyrene Spheres

To provide an experimental counterpart to these cal-
culations, slides of .3 µm and 1 µm diameter polystyrene
spheres[72] ( diameter standard deviation less than than
3%) were prepared and digitally photographed using our
Olympus BX-50 microscope, along with a scale whose
line spacing is 2 µm. For this microscope, the manufac-
turer states the resolution is rA = .45 µm.

For .3 µm diameter spheres, since a = .15µm and
so a/rA = .33, we find that R/rA ≈ .86 from Fig.12.
Therefore, the spheres should appear as of diameter
2R ≈ 2(.86rA) ≈ .77 µm.

No pictures shall be given here, but the observations
are summarized. The digital image was enlarged until
it appeared as composed of pixels, each a .2 µm×.2 µm
square. Spheres which stood alone (for, many spheres
cluster) typically appeared as 3×3 pixel grids (dark in
the middle, and grey on the outside, with the surround-
ing pixels lighter and more-or-less randomly shaded), al-
though a 4×4 grid for a few could not be ruled out. Thus
the spheres appeared to be of diameter ≈ .6 µm, with er-
ror of a pixel size, consistent with the estimate.

For 1 µm diameter spheres, since a = .5 µm and
so a/rA = 1.1, we find that R/rA ≈ 1.7 from Fig.12.
Therefore, the spheres should appear as of diameter
2R ≈ 2(1.7rA) ≈ 1.5 µm.

In the unenlarged photograph, isolated spheres seemed
to be only slightly larger than 1 µm, perhaps 1.2-1.3 µm,
with a bright center (the spheres are transparent) and
dark boundary. However, when enlarged so that the pix-
els could clearly be seen, particularly the outermost light
grey ones, the spheres typically appeared as an 8×8 grid.
Thus the spheres appeared to be of diameter 1.6 µm,
with error of a pixel size, consistent with the estimate.

4. Spherosome Sizes and Brown’s Lens

In the previous section we have seen that the
polystyrene sphere sizes observed through our Olympus
microscope are larger than the actual sizes . Therefore,
we expect the same to be true of the spherosomes. More-
over we expect that the spherosome sizes observed by
Brown will be even larger than what we observed, due
to a larger Airy radius for Brown’s lens than the .45 µm
Airy radius for the Olympus microscope. The universal
size of Brown’s “molecules,” regardless of their source,
can be attributed to their being small enough so that
their Airy disc is what Brown observed.

We do not have an electron microscope picture of
spherosomes to indicate their actual sizes, as that proved
to be very difficult to obtain: that is a challenging project
for the future. Unlike amyloplasts which are structurally
robust and whose electron microscope picture we suc-
ceeded in obtaining (see Fig. (16), spherosomes are mem-
brane bound lipid droplets: when an attempt is made to
concentrate them by filtering so that there are sufficient
numbers to view, they coalesce, and appear as an amor-
phous mass.)

We therefore turn to estimate the actual spherosome
sizes using our observations through the Olympus micro-
scope As we have noted, according to Fig. 10, we ob-
served that most spherosomes appeared to cluster about
1±.1 µm in diameter, the largest being perhaps 1.3±.1
µm in diameter.

For the smallest spherosomes, we have R/rA ≈
(.9/2)/.45 ≈ 1. From Fig. 12 we read that therefore
a/rA ≈ .5, so their radius is a ≈ .5 × .45 ≈ .2 µm, i.e.,
their diameter is ≈ .4 µm.

For most spherosomes, we have R/rA ≈ (1/2)/.45 ≈
1.1. From Fig. 12 we read that therefore a/rA ≈ .6, so
their radius is a ≈ .6× .45 ≈ .27 µm, i.e., their diameter
is ≈ .54 µm.

For the largest spherosomes, we have R/rA ≈
(1.4/2)/.45 ≈ 1.6. From Fig. 12 we read that there-
fore a/rA ≈ 1.1, so their radius a ≈ 1.1 × .45 ≈ .5 µm,
i.e., their diameter is ≈ 1 µm.

Armed with these results, we may try to find some
properties of Brown’s lens. We assume that the minimum
size of his “molecules” corresponds to the Airy disc, i.e.,
they belong in the realm a/rA < .3 in Fig. 12 for which
R/rA ≈ .8. Since Brown quotes the minimum diameter
of his “molecules” as ≈ 1/20, 000 in≈ 1.3 µm, half this is
the radius R ≈ .65 µm, and so the Airy radius of Brown’s
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lens is deduced to be

rA = R/.8 ≈ .65/.8. ≈ .8 µm.

Then, from Eq. (4) we may conclude that the radius of
the exit pupil of his f = 1/32 in≈ .8 mm lens was

b =
.61λf

rA
=

.61× .55× .8
.8

≈ .35 mm.

As a consistency check, we note that Brown quoted
the maximum diameter of his “molecules” as ≈ 1/15, 000
in≈ 1.7 µm. Then, R/rA ≈ (1.7/2)/.8 ≈ 1.1. From
Fig.12, we read that this corresponds to a/rA ≈ .6.
Therefore, we deduce that the actual radius of these
largest spherosomes is a ≈ .6 × .8 ≈ .5 µm. This agrees
with the actual radius of the largest spherosomes we ob-
served.

5. Amyloplast Brownian Motion and Rotation

FIG. 13: Mean linear displacement ¯|x| in µm and mean an-
gular displacement ¯|θ| in degrees, vs R in µm, for amyloplasts
undergoing Brownian motion for 60 sec. The least squares fit
curves depicted here are given in Eq.(5).

We next turn to analysis of the observed Brownian
motion of the amyloplasts. In what follows, R is half the
length of the long axis of an amyloplast.

From Fig. 8, the x–displacement, y–displacement, and
θ–displacement of each amyloplast, over the one minute
interval, were found. Because of the possibility of over-
all fluid flow (assumed constant and irrotational in the

region containing the observed particles), the mean dis-
placement was calculated; it proved to be .053 µm in
the x-direction (negligible flow) and -.847 µm in the y-
direction. This was then subtracted from each displace-
ment, to give the true Brownian contribution.

A plot of mean linear displacement and a graph of
mean angular displacement for each R bin (.25 µm wide)
appears in Fig. 13. Smallest and largest R values repre-
senting too few data points were omitted (which is why
there are fewer data points representing ¯|θ| than ¯|x|). Fig.
13 was made with the Maple program (with labeling help
from the Appleworks program), and includes graphs of
the least squares fit to a power law A/RB , for each set of
data. The results, compared with the predictions given
in Eqs. 1, 2 (setting Reff ≡ R) are

¯|x| =
3.2

R.7
µm

µm compared with ¯|x| = 4.0
R.5

µm
µm,

¯|θ| =
130
R1.3

µm

◦
compared with ¯|θ| = 201

R1.5
µm

◦
. (5)

The powers in Eqs. (5) agree reasonably well, consid-
ering that no correction has been made for the ellipsoidal
nature of the particles. As discussed in Section III B and
Appendices B 5 and B 9, Reff for translation and rota-
tion of ellipsoids in Eqs. (1), (2) should be less than R
for a sphere by a factor that is different for the long and
short axes, and that varies with their ratio. No attempt
was made to correct for this effect, nor for the fact that
the observed amyloplast sizes are larger than the actual
sizes, just as in the case of the spherosomes.

Interesting studies, with appropriate selection of uni-
form particle sizes, can be made. The subject of Brown-
ian motion of ellipsoids, first studied by Perrin, is still of
interest[71].

The numerical coefficients in the comparable Eqs.(5)
differ because the last terms on the right–hand sides
of Eqs.(1),(2) assume the fluid in which the particles
are immersed is water. However, the amyloplasts move
in a fluid that is a mixture of water and the intra-
cellular medium, which emerged with the amyloplasts
from the pollen. That is, the measured coefficients are
proportional to 1/

√
ηfluid while the expressions based

upon Eqs.(1),(2) are proportional to 1/
√

ηwater. From
the displacement expressions in Eq.(5) we obtain for√

ηfluid/ηwater the value (4.0/3.2) ≈ 1.3, while from the
angular displacements this is (201/130) ≈ 1.5. These es-
timates of the fluid viscosity are in reasonable agreement,
especially considering the omission of an ellipsoidal cor-
rection mentioned above.

One last qualitative observation is worth mentioning.
Some wet-dry 400 grit sandpaper was used to grind to
powder some of a seashell, a rock, and a nickel. In all
cases, the powder (which was colored white or grey, while
the sandpaper was colored black, so the sandpaper grit
was not being observed), had some particles of apparent
sizes . 1µm which were observed jiggling in water, just
as Brown said occurred for anything he ground up fine
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FIG. 14: Ball Lens Microscope Diagram

enough.

D. Ball Lens Microscope

Finally, we discuss construction of a single lens micro-
scope with a magnification comparable to Brown’s, and
some observations made with it.

Ground lenses of high magnification such as those
made by Bancks and Dollond are not readily available
nowadays. However, fortunately, precision small glass
spheres called ball lenses are readily available (they are
used for coupling lasers to optical fibers) that can be used
as high magnification lenses[73]. We purchased a ball lens
of 1 mm diameter and index of refraction 1.517[74]. The
focal length f of a sphere of radius R can be found from
the lensmaker’s formula[75] for a thick lens of radii R1

and −R2, thickness T and index of refraction n:

1
f

= (n− 1)
[ 1
R1

− 1
R2

+
(n− 1)T
nR1R2

]
. (6)

For T = 2R and R1 = −R2 = R, Eq. (6) yields

f = nR/2(n− 1). (7)

For our lens, f= .733 mm=1/34.6 inch, not far from the
f=1/32 inch of Brown’s lens.

The “microscope” is essentially the lens sandwiched
between two perforated supports. One support was made

as follows. A circle of 1” diameter was cut out of a 1/64”
(≈0.4 mm) thick aluminum sheet. A 0.8 mm. diameter
hole was drilled part way through its center, and then a
0.48 mm diameter hole was drilled all the way through.
Thus, the exit pupil radius was constructed to be 0.24
mm. Then, a small washer was made from a piece of
1/64” brass with a 1 mm diameter hole drilled through it.
The holes in the two pieces were aligned, and the pieces
secured to each other with Kapton polyimide tape. The
ball lens was placed in the resulting hole, supported by
the edges of the 0.48 mm hole and surrounded by the
washer.

The second support consisted of a piece of 3 mil (0.076
mm) brass shim stock with a 0.55 mm diameter hole in
the center, It was secured over the lens with more Kapton
tape to hold the lens in place and serve as the entrance
aperture.

The assembled “microscope” was then mounted with
more Kapton tape over the entrance aperture of a Log-
itech QuickCam Pro USB camera. This camera was cho-
sen from a large number of such “webcams” because the
front of its lens lies very close to the surface of the camera,
allowing a very small separation between the microscope
and the imaging camera. A 1/4”× 3”× 5” plastic sheet
was fashioned, and a hole was drilled through its center,
through which the microscope backed by the camera lens
protrudes: the body of the camera rests upon the plastic.
An inverted-L shaped bracket was attached to the plastic
sheet to hold the camera .

A U-shaped plastic stand, of dimensions slightly less
than 3” (the length of a microscope slide) was con-
structed from 1/4” plastic. Horizontal grooves (rabbets)
to support the slide were cut in the sides of the U just

FIG. 15: Ball Lens Microscope Setup.



20

below the top edges. The plastic sheet holding the mi-
croscope/camera rests upon the top edges of the U, and
can be moved freely over the slide.

A small hole was drilled through one side of the U,
partly through and partly below the rabbet. Focus ad-
justment is achieved by placing a small wedge (e.g., a
toothpick) through the hole and under the slide. As the
wedge is moved in and out, it raises and lowers the slide
by a fraction of a millimeter. Light from a small micro-
scope illuminator, collimated to a 1” beam, is diffusely
reflected from a white surface on which the plastic stand
sits, through the slide and into the microscope/camera.

The setup is shown in Fig. 15. The plastic sheet sup-
porting the camera (cable going off to the left) lies in the
middle of the picture, slightly skewed to the stand. The
ball lens and its support, attached to the camera aper-
ture, lies within a hole in the middle of the plastic sheet,
and so is not visible, nor is the focus adjustment hole in
the side visible. The inverted L-shaped bracket that af-
fixes the camera, the rabbets which support a slide, and
a bit of a slide itself (just below the plastic sheet on the
left), the inverted U stand, as well as the light source and
its power supply, are visible.

1. Amyloplasts Seen With Ball Lens Microscope

Now we address the discrepancy between our observa-
tions with the Olympus microscope, summarized in Fig.
10, that the amyloplasts appear to be of average radius
(i.e., half-length) ≈ 2 µm, with maximum radius ≈ 3
µm, and Brown’s observations with his microscope, that
their radius range is ≈ 3–4 µm. We shall do so by show-
ing that the observations with the ball lens are essentially
the same as Brown’s. But, also, the electron microscope
picture Fig.16 of amyloplasts, while not depicting a large
sample, suggests that the size distribution measured with
the Olympus microscope is reasonably accurate.

For the ball lens, the Airy radius is rA = .61λf/b = 1.0
µm. This can also be seen in the graph of its intensity
versus distance in Appendix F 2, Fig. 20 (the B̄ = 2
curve). The exit pupil b=.24 mm is not the ideal size
to minimize spherical aberration according to the Strehl
criterion (discussed in Section V C 2 and Appendix F 2).
That ideal size is b=.19 mm, corresponding to the B̄ = 1
curve in Fig.20. However, its intensity is still reasonably
approximated by the Airy function, so we shall assume
that the considerations leading to Fig.12 are valid.

To check that rA = 1 µm, a slide containing 1 µm
diameter polystyrene spheres was observed and pho-
tographed. Another slide containing a scale with marks
10 µm apart was separately photographed. Both pho-
tographs were superimposed using the program Photo-
shop Elements 2. Using the program ImageJ, the image
of the spheres was enlarged so that the pixels could be
seen, and they were analyzed, as described for the spheres
photographed with the Olympus microscope in section
V C 3. The result was that the polystyrene spheres ap-

FIG. 16: Clarkia pulchella amyloplasts photographed with
the electron microscope.

peared to have diameter 2.1±.2µm.
For a theoretical comparison, with a/rA = .5/1 = .5,

one reads from Fig. 12 that R/rA ≈ 1.1. Therefore,
it is predicted that the apparent radius of the spheres
should be R = 1.1rA = 1.1µm, or diameter 2.2µm, in
good agreement with the observation discussed above.

Now we turn to compare the amyloplast sizes seen
with the Olympus microscope and amyloplast sizes seen
through the ball lens. Fig. 18 shows a portion of a photo
taken through the ball lens, of a slide containing amy-
loplasts that had emerged from a pollen grain (whose
out-of-focus edge appears at the lower left).

As described above, a photograph of a scale was su-
perimposed and the photograph was further enlarged so
that pixels were visible. The radius (half the length) of
44 amyloplasts was measured, 14 of which appear in Fig.
18 and 30 appear in another photograph of a different
scene. Fig.17 contains a graph of number of amyloplasts
in a .25 µm radius bin versus radius in µm.

From this graph, the amyloplasts appear through our
ball lens as of average radius ≈ 3 µm, with maximum
radius ≈ 4 µm. This is ≈ 1 µm larger than what was
observed with the Olympus microscope, Fig. 10, but
exactly what Brown said about the amyloplast sizes he
observed through his lens!

This excellent agreement, between the observations
with our ball lens and Brown’s observations with his lens
should be tempered by the realization that our lens has
rA ≈ 1 µm and exit pupil b = .24mm, whereas we have
deduced that Brown’s lens had rA ≈ .8 µm and exit
pupil b = .35 mm. However, it leaves little doubt that
Brown was seeing enlarged amyloplasts on account of the
diffraction and possible spherical aberration of his lens.
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FIG. 17: Number of amyloplasts in a .25 µm radius bin vs
amyloplast radius (= half amyloplast length).
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VI. THEORY

The appendices contain seven mathematical tutorials.
Appendix A contains a derivation due to Langevin, of

the well known expression, given first by Einstein[76], for
the mean-square displacement of an object undergoing
Brownian motion[77]. The method is easily applied to
give the mean-square angular displacement of an object
undergoing Brownian rotation.

These expressions depend upon the viscous force or vis-
cous torque on the object. Such fluid flow analysis is not
treated in places which treat the material of Appendix A.
The results for a sphere are derived in Appendix B[78].
For an ellipsoid, results are just cited[79].

Appendix C presents a derivation of geometrical op-
tics starting from the wave equation. The discussion
here, utilizing the WKB approximation in 3 dimensions,
does not seem to be given elsewhere, although the re-
sult (the eikonal approximation of geometrical optics) is
well known. Appendix D, a digression, applies this re-
sult to mirrors and lenses. It is emphasized, because of

FIG. 18: Amyloplasts photographed with the ball lens micro-
scope. The superimposed scale marks (the faint horizontal
lines) are 10µm apart.

the approximate solution’s abrupt discontinuities at the
boundaries of mirrors and lenses, that it must be modi-
fied in order to better satisfy the wave equation.

Appendix E contains the modification, obtaining from
Green’s theorem, in a standard way, the Huyghens-
Fresnel-Kirchhoff expression for a diffracted wave ema-
nating a lens[80]. Then, in Appendix F, this theory is
used to discuss lens imaging of a point source. Usually,
books on optics discuss the diffraction of a lens (due to
its limited aperture) and the spherical aberration of a
lens (due to the image made by rays at the rim of the
lens having a different focal plane than the image made
by near-axial rays) separately. Then, no expression is
given for their combined intensity. Here, diffraction and
spherical aberration receive a unified treatment. As a
concrete example, the theory is applied to what is seen
through a 1mm diameter ball lens used as a microscope.
The optimum choice for the exit pupil for such a lens, to
minimize spherical aberration, is discussed.

Appendix G applies these results for a point source to
an extended light source, an illuminated hole of radius a.
The apparent radius of the image is discussed, for small
and large a. As discussed in section III H, results are
obtained which illuminate (sic) Brown’s observations of
“molecular” size,



22

APPENDIX A: BROWNIAN TRANSLATION
AND ROTATION

1. Brownian Translation

The derivation of the expression for the mean square
distance travelled, or mean square angle rotated, by an
object undergoing Brownian motion, is surprisingly sim-
ple.

For motion in the x-direction, an object of mass m
obeys Newton’s second law

dx

dt
= v

m
dv

dt
= −βv + f(t) (A1)

In Eq. (A1), the force on the object due to the impact of
molecules is divided into two pieces. One is a steady vis-
cous force −βv (calculation of the constant β is discussed
in Appendix B), the other is a random force f(t), which
is assumed uncorrelated with x. We imagine a collection
of identical objects undergoing this motion. Each object
suffers a different force, but the average force over the
collection is f(t) = 0. We wish to know the mean square
distance x2 travelled in time t, for this collection. We as-
sume that the molecules are in thermal equilibrium, with
each other and with the objects, so by the equipartition
theorem,

1
2
mv2 =

1
2
kT, (A2)

where k is Boltzmann’s constant and T is the tempera-
ture.

Consider the equations for x2 and xv, which follow
from Eqs. (A1):

1
2

dx2

dt
= xv

m
dxv

dt
= mv2 − βxv + xf(t) (A3)

Upon taking the average, over the collection, of Eqs.
(A3), one obtains

1
2

dx2

dt
= xv

m
dxv

dt
= mv2 − βxv (A4)

since xf(t) = xf(t) = 0. Surprisingly, this force, which
causes the Brownian motion, appears to plays no role in
the subsequent mathematics. However, it does play a
role: it is responsible for Eq. (A2), as can be seen by
calculating vf(t) 6= 0 (which we shall not do here, as it
is not needed).

One readily sees from the second of Eqs. (A4) that xv
exponentially decays to a constant, so that the right side

vanishes,

xv =
m

β
v2 =

kT

β
, (A5)

where Eq. (A2) is utilized in the second step. Putting
Eq. (A5) into the first of Eqs. (A4) and integrating, we
obtain the desired result:

x2 =
2kT t

β
. (A6)

It is useful to have an expression for the mean distance
|x|. It can be argued that the particle position probability
density distribution is well approximated by a gaussian
distribution,

P (x) =
1√
2πx2

e−x2/2x2

which yields the result

|x| = 2
∫ ∞

0

dxxP (x) =

√
2
π

x2 ≈ .80
√

x2.

It is also useful to have an expression for the mean dis-
tance |r| travelled when there is motion in two dimen-
sions. Then

|r| =
∫ ∞

0

r2dr

∫ 2π

0

dθ
1

2πx2
e−r2/2x2

=
√

π

2
x2 ≈ 1.25

√
x2.

2. Brownian Rotation

For Brownian rotation through angle θ about an axis,
for an object of moment of inertia I, the Newtonian equa-
tions are

dθ

dt
= ω

I
dω

dt
= −β′ω + τ(ω), (A7)

where the equipartition theorem implies (1/2)Iω2 =
(1/2)kT , and the random torque satisfies τ(ω) = 0. Eqs.
(A1) and (A7) are precisely analogous, so the result (A6)
in this case becomes

θ2 =
2kT t

β′
. (A8)

APPENDIX B: VISCOUS FORCE AND TORQUE
ON A SPHERE AND ELLIPSOID

1. Fluid Flow Equations

The derivation of the expression for the viscous force,
felt by an object moving with constant velocity through a
fluid, is surprisingly complicated. First one finds the fluid
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velocity and pressure in an equivalent situation, where
the object is at rest and the fluid asymptotically flows
with constant velocity. Then one finds the force.

Any fluid obeys the conservation of mass equation,

∂ρ

∂t
+∇ · ρv = 0.

If the fluid is incompressible, then the mass density ρ is
constant, so

∇ · v = 0. (B1)

The next equation, the Navier-Stokes equation, is New-
ton’s second law for a bit of fluid,

ρ
Dv
Dt

= −∇P + η
3∑

i=1

∂

∂xi

[ ∂v
∂xi

+∇vi

]
= −∇P + η∇2v. (B2)

(Eq. (B1) has been used in the second step of Eq. (B2)).
In Eq. (B2), P is the pressure, η is the coefficient of vis-
cosity, and Dv/Dt denotes the rate of change of velocity
while moving with the fluid. For an area of fluid whose
normal points in the i-direction, the normal force/area is
-P while the shear force/area in the j-direction (j 6= i) is

fij = η
[ ∂vi

∂xj
+

∂vj

∂xi

]
. (B3)

The sum of the pressure and viscous forces on two oppos-
ing faces of an infinitesimal cube of fluid give the pressure
and viscous force/volume on the cube: these are the two
terms on the right side of Eq. (B2). For our application,
we assume that the fluid velocity is small enough that
the left side of Eq. (B2) is negligibly small compared to
either of the two terms on the right side, so (B2) becomes

+η∇2v = ∇P. (B4)

We must solve Eqs. (B1), (B4), subject to the boundary
conditions.

2. Boundary Conditions

We shall consider that the object is a sphere of radius
R. Far from it, the boundary conditions, which obviously
satisfy Eqs. (B1), (B4), are that the fluid velocity and
pressure are constant, say

lim
r→∞

v = wiz = w[ir cos θ − iθ sin θ], lim
r→∞

P = Q.

Here, iz, ir and iθ are respectively the unit vectors in
the z-direction and in the spherical coordinate r and θ
directions, and w is the constant asymptotic fluid speed,
while Q is the constant asymptotic pressure. There is
no loss in generality in observing that, for r > R, the
solution may be written

v = ir[w cos θ + v′r(r, θ)] + iθ[−w sin θ + v′θ(r, θ)],
P = Q + p(r, θ).

where v′r, v′θ and p all vanish for large r. Nothing depends
upon the azimuthal angle φ because the solution must be
rotationally symmetric about the z-axis.

The boundary condition at the surface r = R of
the sphere is that v = 0. But this is only possible
if v′r(r, θ) = wf(r) cos θ, v′θ(r, θ) = wg(r) sin θ, where
f(R) = −1, g(R) = 1. Any additional terms must van-
ish both at infinity and on the sphere’s surface, but that
is the solution for a fluid at rest, vanishing everywhere.
Thus we look for solutions of the form

v = irw cos θ[1 + f(r)] + iθw sin θ[−1 + g(r)],
P = Q + p(r, θ). (B5)

3. Fluid Velocity and Pressure

First, consider the constraint of Eq. (B1). Putting Eq.
(B5) into Eq. (B1) gives

∇ · v =
1
r2

∂

∂r
r2{w cos θ[1 + f(r)]}+

1
r sin θ

∂

∂θ
sin θ{w sin θ[−1 + g(r)]} = 0 (B6)

(expressions for vector operators in spherical coordi-
nates can be found, e.g., on the back cover of Jackson’s
book[81]). This tells us that

1
r2

d

dr
r2f(r) +

2
r
g(r) = 0 or

g(r) = −f(r)− r

2
f ′(r) (B7)

Next we apply Eq. (B4). This can be rewritten as a
first order equation in terms of B ≡ ∇ × v, by means
of the identity ∇× (∇× v) = ∇(∇ · v) −∇2v = −∇2v
(using (B1)):

η∇×B = −∇P. (B8)

Eq. (B8) looks like Maxwell’s equation for a magnetic
field caused by an azimuthally symmetric current ∼ ∇P .
Thus we expect that B ∼ iφ, and this is borne out by
calculation. Using Eqs. (B5) and (B7),

B ≡ ∇× v = iφ
1
r

[ ∂

∂r
rvθ −

∂

∂θ
vr

]
= −iφw

sin θ

r

[r2

2
f ′′(r) + 2rf ′(r)

]
. (B9)

Write Eq. (B9) as B = iφB(r) sin θ, and insert this into
Eq. (B8):

∇×B =
[
ir

1
r sin θ

∂

∂θ
sin θ − iθ

1
r

∂

∂r
r
]
B(r) sin θ

= ir
1
r
2 cos θB(r)− iθ sin θ

1
r

∂

∂r
rB(r)

= −1
η
∇P = −ir

1
η

∂

∂r
p− iθ

1
ηr

∂

∂θ
p. (B10)
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Eq. (B10) can only be satisfied if p/η = h(r) cos θ, where
B, h satisfy the two equations

B(r) = −r

2
h′(r), h(r) = −B(r)− rB′(r). (B11)

Combining Eqs. (B11) yields the second order differential
equation for B(r),

d2

dr2
rB(r)− 2

r
B(r) = 0.

The solutions are B(r) = Cr−2, and B(r) ∼ r (which we
discard). Then, from (B11), we find h(r) = B(r).

Returning to Eq.(B9), we now have a differential equa-
tion for f(r),

C

r2
= −w

r

[r2

2
f ′′(r) + 2rf ′(r)

]
. (B12)

The inhomogeneous solution is C/wr, and the two solu-
tions of the homogeneous equation are C ′r−3 and ∼ 1
(which we discard). Thus we obtain f(r), and then get
g(r) from Eq. (B7):

f(r) =
C

wr
+

C ′

r3
, g(r) = − C

2wr
+

C ′

2r3
.

Finally, the boundary conditions f(R) = −1, g(R) = 1
determine the constants:

C = −3wR

2
, C ′ =

R3

2
.

Putting these results into Eq. (B5) gives the velocity and
the pressure:

v = irw cos θ
[
1− 3R

2r
+

R3

2r3

]
+ iθw sin θ

[
− 1 +

3R

4r
+

R3

4r3

]
P = Q− cos θ

3wηR

2r
(B13)

4. Force on Sphere

First, we calculate the force due to the pressure. This
force PdA, on an area dA of the sphere’s surface, points
radially inward. Because of the symmetry, the integrated
force only has a net component in the −iz direction. The
component of the force in that direction is PdA cos θ.
Therefore, the net pressure force is

Fp = −iz

∫ 2π

0

∫ π

0

∫ 2π

0

R2 sin θdθdφ
[
Q− cos θ

3wη

2

]
cos θ

= iz2πwηR. (B14)

Second, we calculate the viscous force/area, on an ele-
ment of surface area oriented along ir. It is in the direc-

tion iθ, and is found from Eq. (B3):

3∑
i,j=1

irifijiθj = η
3∑

i=1

[(iθ · ∇vi)iri + (ir · ∇vi)iθi]

= η
[1
r

∂

∂θ
vr −

3∑
i=1

vi
1
r

∂

∂θ
iri +

∂

∂r
vθ −

3∑
i=1

vi
∂

∂r
iθi

]
,

where the second step uses ir · ∇ = ∂/∂r and iθ · ∇ =
r−1∂/∂θ and we have differentiated by parts. Using
(∂/∂θ)ir = iθ, and (∂/∂r)iθ = 0 and inserting the ve-
locity components from (B13), we obtain

3∑
i,j=1

irifijiθj = η
[1
r

∂

∂θ
vr +

∂

∂r
vθ −

1
r
vθ

]
r=R

= η
[ ∂

∂r
vθ

]
r=R

= −ηw sin θ
3

2R
.(B15)

Since (B15) is the viscous force/area in the iθ direction, it
must be multiplied by − sin θdA to get the projection of
the force on a surface element in the iz direction. Thus,
the net viscous force is

Fv = iz

∫ 2π

0

∫ π

0

∫ 2π

0

R2 sin θdθdφ
[
− ηw sin θ

3
2R

]
(− sin θ)

= iz4πwηR. (B16)

Therefore, from Eqs. (B14) and (B16), the net force is

F = Fp + Fv = iz6πwηR.

Of course, here v = izw is the asymptotic velocity of the
water with respect to the sphere at rest, while vs = −v
is the velocity of the sphere with respect to the asymp-
totically resting water, so the force on the moving sphere
(Stokes’ law) is

Fs = −vs6πηR. (B17)

Thus, in Eq. (A6), β = 6πηR.

5. Force on Ellipsoid

When the shape of the object is not a sphere, still one
expects from dimensional considerations that the expres-
sion for the force is of the same form as (B17). However,
the radius R is replaced by a much more complicated
function of the dimensions, an effective radius. For an
ellipsoid z2/a2 + (x2 + y2)/b2 = 1 (a ≥ b), moving in the
z-direction, the result is[79]

R−1

eff =
3
8

∫ ∞

0

dλ
2a2 + λ

(a2 + λ)3/2(b2 + λ)

=
3
8

[
2a2 − b2

(a2 − b2)3/2
ln

a +
√

a2 − b2

a−
√

a2 − b2
− 2a

a2 − b2

]
. (B18)
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For b → a, this becomes a−1+(2/5a3)(a2−b2)+... which,
of course, reduces to the Stokes value a−1 when b = a.
A good fit for .2 ≤ b/a ≤ 1 is Reff ≈ .8b + .2a. With
b = a/2, (B18) gives Reff ≈ .60a.

For the ellipsoid moving in the x or y-direction, the
result is

R−1

eff =
3
8

∫ ∞

0

dλ
2b2 + λ

(a2 + λ)1/2(b2 + λ)2

=
3
8

[
a2 − (3/2)b2

(a2 − b2)3/2
ln

a +
√

a2 − b2

a−
√

a2 − b2
+

a

a2 − b2

]
. (B19)

For b → a, this becomes a−1 + (3/10a3)(a2 − b2) + ....
A good fit for .2 ≤ b/a ≤ 1 is Reff ≈ .6b + .4a. With
b = a/2, (B19) gives R ≈ .69a.

The area moving through the water is, in increasing
order, that of the the ellipsoid moving parallel to its long
axis, the ellipsoid moving perpendicular to its long axis,
and the moving sphere of radius a. It is reasonable that
the force in these three cases is also in increasing order.

6. Rotational Boundary Conditions

The calculation of the viscous torque, felt by a sphere
rotating with constant angular velocity through a fluid
asymptotically at rest, follows the same lines as for
the translating sphere, and is simpler. First comes the
boundary conditions. As before, we consider the problem
from the reference frame of the sphere, so that the fluid’s
asymptotic velocity is

lim
r→∞

v = iφΩr sin θ lim
r→∞

P = Q. (B20)

Ω is the constant asymptotic fluid angular velocity about
the z-axis, while Q is the constant asymptotic pressure.
(B20) satisfies Eqs. (B1), (B4). The general solution has
the form

v = iφ[Ωr sin θ + v′φ(r, θ)], P = Q + p(r, θ)

where v′φ and p vanish for large r and satisfy Eqs. (B1),
(B4).

The boundary condition at the surface r = R of
the sphere is that v = 0. But this is only possible if
v′φ(r, θ) = Ωf(r)r sin θ, where f(R) = −1. Any addi-
tional terms must vanish both at infinity and on the
sphere’s surface, but that is the solution for a fluid at
rest, vanishing everywhere. Thus we look for solutions of
the form

v = iφΩr sin θ[1 + f(r)], P = Q + p(r, θ). (B21)

7. Fluid Velocity and Pressure

The constraint of Eq. (B1) is identically satisfied, since

∇ · v = r sin θ
∂

∂φ
vφ = 0.

Next we apply Eq. (B4), in the form (B8). First we
calculate

B ≡ ∇× v

=
[
ir

1
r sin θ

∂

∂θ
sin θ − iθ

1
r

∂

∂r
r
]
Ωr sin θ[1 + f(r)]

= 2Ω[ir cos θ(1 + f)− iθ sin θ(1 + f +
r

2
f ′)]. (B22)

Then, according to (B8),

∇×B = iφ2Ω
1
r

[ ∂

∂r
r[− sin θ(1 + f +

r

2
f ′)]

− ∂

∂θ
[cos θ(1 + f)]

]
= −iφ4Ω sin θ[f ′ +

r

4
f ′′]

= −1
η
∇P = −1

η

[
ir

∂

∂r
p + iθ

1
r

∂

∂θ
p
]
. (B23)

From Eq. (B23), it follows that

f ′ +
r

4
f ′′ = 0, p = 0.

The two solutions are f(r) = C/r3 and ∼ 1 (which we
discard). The boundary condition f(R) = −1 deter-
mines the constant, C = −R3. Thus, we obtain from
Eq. (B21), the velocity

v = iφΩr sin θ[1− R3

r3
]. (B24)

8. Torque on Sphere

First we find the force in the φ-direction, using Eq.
(B3), and then we can calculate the torque. The
force/area, on the surface area dA oriented along ir, in
the direction iφ is

3∑
i,j=1

irifijiφj = η
3∑

i,=1

[(iφ · ∇vi)iri + (ir · ∇vi)iφi]

= η
[ 1
r sin θ

∂

∂φ
vr −

3∑
i,=1

vi
1

r sin θ

∂

∂φ
iri

+
∂

∂r
vφ −

3∑
i,=1

vi
∂

∂r
iφi

]
.

Since vr = 0, (∂/∂φ)ir = sin θiφ and (∂/∂r)iφ = 0, we
have from (B24),

3∑
i,j=1

irifijiφj = η
[
− 1

r
vφ +

∂vφ

∂r

]
r=R

= 3ηΩ sin θ. (B25)

The torque/area on the surface of the sphere is this
force/area multiplied by the moment arm R sin θ, and
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it points in the iz direction, so the net viscous torque is

T = iz

∫ 2π

0

∫ π

0

∫ 2π

0

R2 sin θdθdφ[R sin θ][3ηΩ sin θ]

= iz8πηΩR3.

Of course, here ω = izΩ is the asymptotic angular veloc-
ity of the water with respect to the sphere at rest, while
ωs = −izΩ is the angular velocity of the sphere with re-
spect to the asymptotically resting water, so the torque
on the moving sphere is

Ts = −ωs8πηR3. (B26)

Thus, in Eq. (A8), β′ = 8πηR3.

9. Torque on Ellipsoid

When the shape of the object is the ellipsoid z2/a2 +
(x2 + y2)/b2 = 1 (a ≥ b), the expression for the torque is
of the same form as (B26), but the radius R is replaced
by another expression. For rotation about the long (a)
axis, the result is[79]

R−3

eff =
3
2

∫ ∞

0

dλ
1

(a2 + λ)1/2(b2 + λ)2

=
3
2

[
a

(a2 − b2)b2

− 1
2(a2 − b2)3/2

ln
a +

√
a2 − b2

a−
√

a2 − b2

]
. (B27)

For b → a, this becomes a−3 + (6/5a5)(a2 − b2) + .... A
good fit for .2 ≤ b/a ≤ 1 is Reff ≈ .84b + .16a. With
b = a/2, (B27) gives Reff ≈ .59a.

For rotation about either of the other axes,

R−3

eff =
3
2

∫ ∞

0

dλ
1

(a2 + λ)3/2(b2 + λ)2
[
λ +

2a2b2

a2 + b2

]
=

3
2(a2 + b2)

[
−a

(a2 − b2)

+
(a2 − (1/2)b2)
(a2 − b2)3/2

ln
a +

√
a2 − b2

a−
√

a2 − b2

]
. (B28)

For b → a, this becomes a−3 + (9/10a5)(a2 − b2) + ....
A good fit for .2 ≤ b/a ≤ 1 is Reff ≈ .56b + .44a. With
b = a/2, (B28) gives Reff ≈ .72a.

APPENDIX C: GEOMETRICAL OPTICS FROM
THE WKB APPROXIMATION

1. The Problem To Be Solved

The problem addressed in the next four appendices is
to find the image of a point source of light, made by a

ball lens of limited aperture. This is used to discuss the
optimal choice of aperture radius.

Consider a ball lens of radius R (diameter D) and in-
dex of refraction n = 3/2. (n = 1.5 is close enough to
the BK7 glass index n = 1.517 of the ball lens of our ex-
periments.) It follows from Eq. (7) that the focal length
of the lens is f = 3R/2.

The point source of light has wave-number k ≡ 2π/λ,
where λ = .55µm (green light). It is placed at the focal
distance f from the center of the lens. Rays pass through
the lens and then through a coaxial hole of radius b in a
screen (the so-called exit pupil), and proceed onwards.

The light does not converge to a point at infinity, as
predicted by geometrical optics for an ideal lens. Instead,
the light intensity distribution which appears on a screen
at infinity (placed such as to make the image as sharp as
possible) is a circular blob, Although it sounds like some-
thing used by a racetrack oddsmaker, this light intensity
distribution is called the point spread function because it
describes how the light from a point source is spread out
by the lens.

But, first, the connection should be made between this
problem and the one we actually want to solve. The lat-
ter is to use the lens as a magnifying glass. That is, one
places the point source on the optic axis slightly closer
to the lens than f , so that the sharpest image is on a
plane at 25cm on the same side of the lens as the source.
One then divides this magnified image intensity by the
lens magnification, m ≈ 25/f (f << 25cm), to obtain
the apparent image intensity to scale (i.e., as if there was
in fact a spread-out object of that size being precisely
imaged, instead of a point source being imprecisely im-
aged.)

However, if the source is instead put at the focal length,
with the image at −∞, the angular magnification is still
m. But, this is the same angular magnification as when
the image is at +∞, on the opposite side of the lens from
the source. It is this simpler problem we are addressing.

The point spread function for this simpler problem can
be readily utilized to find the intensity distribution for
the magnifier application. For example, suppose we find
a ring of light at infinity, with a dark boundary which
makes angle β0 with a point at the center of the lens.
The magnifier usage has this circle of vanishing intensity
appearing on the 25cm image plane with radius 25β0.
Therefore, the apparent radius of the circle of light is
25β0/m = β0f .

2. Light Field in the WKB Approximation

We shall accept the argument[82] that there is no ap-
preciable error in calculating the light intensity by taking
the monochromatic light amplitude to be described by a
complex scalar field U(x) exp−iωt, instead of the actual
vector electromagnetic field, with the time average inten-
sity given by |U(x)|2.

The wave equation for U(x, t) with a point source of
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light of constant amplitude C at the origin is

∇2U(x, t)− n2(x)
c2

∂2

∂t2
U(x, t) = −4πδ(x)C.

We permit the speed of light c/n(x) to vary through-
out space except in the neighborhood of the origin where
the speed is that of vacuum, c, and the index of refrac-
tion n(x) = 1. Later we shall specialize to n(x) de-
scribing a ball lens, i.e., n(x) = 1 everywhere except
within a sphere where n(x) = n is constant. With
U(x, t) = U(x) exp−iωt and ω = kc, the wave ampli-
tude is the solution of

∇2U(x) + k2n2(x)U(x) = −4πδ(x)C. (C1)

Away from the source, Eq. (C1) may be written in
Schrödinger-like form

−∇2U(x)− k2[n2(x)− 1]U(x) = k2U(x)

It is amusing that turn-of-the-last century physicists got
their insights into quantum theory through optics, while
we get our insights into optics through quantum theory.
The quantum problem, analogous to our optical ball lens
problem, is for a particle of mass 1/2 and momentum
magnitude k (~ = 1) emerging from a point and scat-
tering from a spherical potential well of radius R and
constant depth k2[n2 − 1], The wave function is to have
the form r−1 exp ikr in the neighborhood of r = 0, a
point which lies a distance f from the center of the well.
Although this is an exactly solvable problem, it is diffi-
cult to obtain physical results from the analytic expres-
sion, which is expressed as an infinite series of partial
waves[83].

For this reason we shall apply the approximate WKB
method. Quantum texts seem to universally discuss this
method for one-dimensional motion only. However, the
three dimensional problem has been treated[84].

We write U = exp i[kΦ0 + Φ1 + k−1Φ2 + ...] and sub-
stitute into Eq. (C1). Gathering terms of like powers in
k, we obtain (away from x = 0 which shall be handled
later):

k2∇Φ0·∇Φ0 = k2n2, (C2)
2k∇Φ1·∇Φ0 = ik∇2Φ0 (C3)

Eq. (C2) implies that

∇Φ0(x) = n(x)v̂(x), v̂(x) · v̂(x) = 1. (C4)

To find v̂(x) requires implementing the restriction that
Eq. (C4) is a gradient. To do that, consider

[v̂ · ∇]nv̂ = [v̂ · ∇]∇Φ0 =
3∑

i=1

v̂i∇ ∂

∂xi
Φ0

=
3∑

i=1

vi∇nvi =
1
2n
∇[n2v̂ · v̂] = ∇n(C5)

Imagine space filled with the vector field v̂. Picture a
line passing through a point parallel to the vector v̂ at
that point, and continuing on parallel to the vectors it
encounters on its path. Such lines are like the flow lines
of a fluid in steady state flow, with v̂(x) as the (constant
speed) velocity field.

Now, if one imagines moving along a particular flow
line with the fluid, the rate of change of any function
f(x) is given by the substantial derivative

D

Dt
f(x) ≡ f(x + v̂dt)− f(x)

dt
= [v̂ · ∇]f(x).

We see that the left side of Eq. (C5) is the substantial
derivative of n(x)v̂(x).

So, for a fictitious particle of fluid moving with velocity
v̂(t) along a single flow line x(t), according to Eq. (C5),
it satisfies the equation of motion

d

dt
[n(x(t))v̂(t)] =

D

Dt
n(x)v̂(x) = ∇n(x(t)) or

d

dt
v̂ = −v̂

d

dt
lnn +∇ lnn. (C6)

Given a surface, once one specifies the initial velocity
vectors on it, the Newton-type law Eq. (C6) then gives
the velocity of the fluid elsewhere.

The force in Eq. (C6) ensures that the particle keeps
moving with constant speed: the scalar product of Eq.
(C6) with v̂(t) is

1
2

d

dt
[v̂(t) · v̂(t)] = [1− v̂(t) · v̂(t)]

d

dt
lnn(x(t))

(v̂ · ∇ =
∑

i[dxi/dt][∂/∂dxi] = d/dt has been used), so if
v̂ · v̂ = 1 initially, that speed is maintained.

It is easily seen that Snell’s law is obtained as a con-
sequence of Eq. (C6). If a particle moves in a medium
with constant n = n1 (a straight line trajectory since the
force vanishes) and passes through a plane interface be-
yond which n = n2, it receives an impulse perpendicular
to the plane. Thus, from the first of (C6), the component
of nv̂ parallel to the plane does not change:

n1v̂1,|| = n2v̂2,|| or n1 sin θ1 = n2 sin θ2,

where θ is the angle made by v̂ and the normal to the
plane

We wish to find the solution of Eq. (C4) when v̂(x)
is the velocity field whose flow lines are described by Eq.
(C6). We shall now see that Φ0 is the least action for
this motion. For, consider the principle of minimizing
the particular action

A(x) ≡
∫ x

x0

dtL(x(t), ẋ(t)) ≡
∫ x

x0

dtn(x(t))[ẋ(t) · ẋ(t)]1/2

(C7)
We note for later use that t can be replaced by any func-
tion of t without altering the action. The principle of
least action gives rise to Lagrange’s equation,

d

dt

n(x)v
[v · v]1/2

= [∇n(x)][v · v]1/2, (C8)
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where v = ẋ(t). By choosing t = s, where s is the
distance travelled by the particle, so ds2 = dx · dx, the
velocity v = dx/ds has speed v · v = 1. Then, Eq. (C8)
is identical to the equation of motion Eq. (C6).

Imagine the vector field passing through an initial sur-
face, labeled by coordinate s = 0 and proceeding on-
ward. Since each member of the family of subsequent
s = constant surfaces is perpendicular to v̂, we have
∇s(x) = C(x)v̂(x), where C is some function. However,

v̂ · ∇s =
∑

i

dxi

ds

∂

∂xi
s =

ds

ds
= 1,

so C = 1 and ∇s = v̂.
Then, Eq. (C7) may be written:

A0(x) ≡
∫ s(x)

0

dsL(x(s), v̂(s)) =
∫ s(x)

0

dsn(x(s)),

(C9)
where it is understood that x, v̂ depend not only upon
s, but also on two other coordinates, say ξ, η, laid out
upon the constant s surfaces. So, from (C9),

∇A0(x) = n(x(s))∇s = n(x(s))v̂(s). (C10)

This is the same as (C4), so Φ0 = A0.
Φ0 is called the optical path length. A light ray follows

the flow line of the fictitious particle we have been con-
sidering but, of course, it moves along that path with the
speed of light c/n. So, when a light ray moves through
the distance ds, that takes time dt=dsn/c. Thus, accord-
ing to Eq. (C9), the optical path length Φ0 is just the
integrated time that light takes to go from one place to
another, multiplied by c. (The “principle of least time,”
the idea that the actual path light takes between two
points is the path which takes the least time, is due to
Fermat in 1662.) As a consequence, all rays of light which
have the same phase at the surface s = 0 and travel to
the surface s have the same phase there. The surface of
constant s is called a “wave front.”

To complete the WKB approximation, we need to find
Φ1. Setting Φ1 = iΦI

1 in Eq. (C3), with use of (C4), we
have that

2nv̂ · ΦI
1 = 2n

d

ds
ΦI

1 = ∇ · (nv̂) =
d

ds
n + n∇ · v̂.

From the second and fourth terms of this equation,

ΦI
1(x) = lnn1/2(x) +

1
2

∫ s(x)

0

ds∇ · v̂(x(s)). (C11)

Thus, from Eqs.(C9),(C11), we obtain the WKB ap-
proximate solution of the wave equation:

U(x) = n−1/2(x)e−
1
2

R s(x)
0 ds∇·v̂(x(s))eik

R s(x)
0 dsn(x(s))

(C12)
Eq. (C12) is what shall be used in what follows. It

requires specifying an initial surface for s = 0. From

this, at any point x0 on this surface, the initial veocity
field v̂(x0) can be determined, since it is perpendicular
to the surface and of unit length. Then, one can solve
the dynamical equation (C6) to obtain the velocity field
elsewhere, and find the specific trajectories x(s,x0). This
allows calculation of the integrals in (C12), resulting in
the WKB solution U(x). If n(x0) = 1, this solution has
U(x0) = 1. If a solution with any other value U0(x0) on
the s = 0 surface is desired, it is U0(x0)U(x).

The last factor in Eq. (C12) is well known in optics,
as the eikonal or ray approximation. What has been
shown here is that it is justified as the WKB approximate
solution of the wave equation.

For our problem, of a point source at x = 0, we choose
the s = 0 surface to be spherical, of infinitesimal radius,
centered at x = 0. Therefore, the initial velocity em-
anates radially out from x = 0. We assume n = 1, for at
least a small volume around x = 0. Then, by Eq. (C6),
dv/dt = 0 so v̂(x) = r/r = r̂, where r is the radial vec-
tor. Since ∇ · r̂f(r) = r−2d2[r2f(r)]/dr2, with f = 1 we
get ∇· v̂ = 2/r. The distance travelled from s = 0, along
the velocity field, is s = r. Putting this into Eq. (C12)
gives, in this volume,

U(x) =
1
r
eikr. (C13)

This satisfies the wave equation Eq. (C1), with a unit
point source at the origin.

APPENDIX D: REFLECTION FROM LENSES
AND MIRRORS

This subsection is a diversion from our main argument,
and may be skipped. It is here for logical completeness,
and to make some pedagogical points.

In applications to optical systems, light, initially in
vacuum, encounters an abrupt change of index of refrac-
tion, in the form of lenses or mirrors. The latter may
be accommodated by setting n = −∞ in the volume of
the mirror. This may be understood from the quantum
theory analogy, where n = −∞ turns the potential well
into an infinite potential barrier.

How good is the WKB approximation in this case? For
completely empty space, Eq. (C13) is the exact solution
of Eq. (C1). However, in non-empty space, there is an
obvious failure when two rays cross. In that case, from
(C4), ∇Φ0 ∼ v̂ would then have two possible values,
which is impossible.

1. Mirrors

This is what occurs at the surface of a mirror. For
example, for a plane mirror at z = 0, and an incoming
plane wave of wave number k and direction v̂ = ĵa + k̂b,
we know the solution of the wave equation. It is the sum
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of incident and reflected waves which vanishes at z = 0:

U ∼ eik(ay+bz) − eik(ay−bz) ∼ eikayeln sin kbz

∼ eikay+ln(kbz)−(kbz)2/6+...,

Obviously, the wave amplitude can no longer be described
by a single term of the form exp ikΦ, where Φ can be
expanded in inverse powers of k.

But, the resolution of this difficulty is apparent from
the example. It is to find the solution of the wave equa-
tion as the sum of WKB terms. After all, the wave equa-
tion is linear, so a sum of solutions is a solution.

For the case of a finite sized mirror, rays which don’t
hit the mirror can continue on their merry way. Those
incident rays Ui which do hit the mirror surface are used
to obtain the reflected solution Ur. That is, the solu-
tion is U = Ui + Ur, where Ur is to be constructed. This
requires, on the mirror surface, knowing Ur and the direc-
tion of the outgoing vector field v̂r. These are obtained
by requiring the wave equation to be satisfied through the
mirror surface, that is, by requiring U = 0 and ∇||U = 0
on the mirror surface.

The first condition implies Ur = −Ui at the surface.
The second condition implies

∇||U = ik[Ui∇||Φi + Ur∇||Φr] = ikUi[v̂i|| − v̂r||] = 0

(the last step uses the WKB approximation of Φ0 replac-
ing Φ, and (C4)). Thus, v̂r|| = v̂i||. Since v̂r is a unit
vector, this implies v̂r⊥ = −v̂i⊥. Thus, the law of reflec-
tion is obtained. This completes the specification of the
initial conditions for the reflected WKB solution, which
can now be constructed using (C12)

The reflected part of U is non-zero within the vol-
ume enclosed by the mirror surface and the outermost
reflected rays, and abruptly jumps to zero outside. More
will be said about this discontinuity at the end of this
Appendix.

2. Lenses

A similar situation prevails for a finite sized lens. The
WKB approximation’s rays travel past or through the
lens and beyond. However, even before the WKB solu-
tion breaks down (where the focused rays which emerge
from the lens eventually cross), something is missing.
Light reflects from glass. The single WKB solution does
not take that into account.

Accordingly, another solution Ur to represent the re-
flected light must be added. We shall only discuss how to
find the light which reflects from the entrance lens sur-
face: light also reflects from the exit lens surface, and
that light reflects off the entrance surface, etc: using the
method of our discussion, one could do these other cal-
culations if one chose.

Reflected energy means decreased refracted energy.
We shall take the refracted solution to be UR = AUi

within the lens, where 0 < A < 1 is real. Likewise, within
the lens, take v̂R to be identical to v̂, the (refracted) con-
tinuation through the lens of the incident solution. So,
we just need to determine A to complete the specification
of UR. In addition, we must find the initial conditions
for Ur and v̂r on the surface, to construct Ur elsewhere.

As with the case of a mirror, this information is sup-
plied by requiring the wave equation be satisfied. That
is, U and ∇U must be continuous across the lens sur-
face. The first condition implies Ui + Ur = UR on the
surface, i.e., Ur = −(1 − A)Ui. The second condition is
Uiik∇Φi + Urik∇Φr = URik∇ΦR on the surface. With
use of Eq. (C4), this gives

v̂r =
v̂i −Anv̂R

1−A
. (D1)

We can find A by taking the scalar product of (D1) with
itself. Since v̂i · v̂R = cos(θi − θR), where the angles
are those the incident and refracted rays make with the
normal to the surface at a point of the surface, we obtain

A =
2

n2 − 1
[n cos(θi − θR)− 1]. (D2)

Putting (D2) into (D1) and taking (D1)’s scalar product
with a unit vector parallel to the surface and in the plane
of v̂i and v̂R, results in the law of reflection:

sin θr =
sin θi −An sin θR

1−A
= sin θi

(using sin θi = n sin θR, Snell’s law). This completes the
specification of the initial conditions for the reflected and
refracted WKB solutions from the entrance surface of the
lens.

For normally incident light, θi = θR, it follows from
(D2) that A = 2/(n + 1): this is also the result given
by electromagnetic theory. Therefore, for n = 3/2, the
magnitude of the reflected light intensity is (1 − A)2 =
1/25. The intensity of reflected light at any other angle
is less than this 4% value. Because it is so small, it
shall be unnecessary to consider this reflected solution in
subsequent sections.

The purpose of this discussion was not just to show
that reflected light can be neglected in considering re-
fracted light through a lens. It was also to emphasize
that the sum of WKB solutions is a solution, and that it
can be accurate to use the WKB solution up to a surface,
and then consider another WKB solution as a continua-
tion of it. Both ideas shall be needed, because something
still is missing.

If the lens is backed by an screen containing an aper-
ture (the exit pupil), UR beyond the lens abruptly jumps
from its WKB value to zero at the edge of the “ray bun-
dle.” Since∇2UR is singular there, this cannot satisfy the
wave equation. There has to be a modified UR which
smooths out this abrupt transition. This brings us to
considerations of diffraction.
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APPENDIX E:
HUYGHENS-FRAUNHOFER-KIRCHHOFF

APPROXIMATION

We shall use the WKB (eikonal) approximation up to
the exit surface of the lens, but construct a solution of the
wave equation which is better than the WKB expression
in the space beyond the lens. This requires input of just
the WKB values for U and ∇U values at the exit surface
of the lens. The solution beyond the lens is provided by
Green’s theorem:

U(x) =
1
4π

∫
Σ0

dΣ0·[U(x0)∇0G(x,x0)−G(x,x0)∇0U(x0)].

(E1)
In what follows, it is helpful to use symbols illustrated
in Fig. (19), although the details associated with this
particular lens are not needed. In Eq. (E1), x = r is
the observation point beyond the lens. x0 = −Lk̂ + r1

represents a point on Σ0, the exit surface of the lens. (It
also includes the screen, but on it U and ∇U are taken
to vanish). dΣ0 = dΣ0n̂ is the surface element of the
lens, whose normal n̂ points radially outward from it.
G(x,x0) is the Green’s function for the vacuum, given
by Eq. (C13) with r = |x − x0| ≡ D. It satisfies the
wave equation with a point source (Eq. (C1), with n = 1
and with the argument of the delta function changed to
D). Thus, Eq. (E1) describes U as a continuous sum
(integral) of solutions of the wave equation so, of course,
it is a solution of the wave equation.

FIG. 19: Ray geometry for a ball lens

Eq. (E1) can be simplified. From (C13),

∇0G = −GD̂[ik −D−1] ≈ −GD̂ik,

where the approximation is valid for D >> λ. From
(C12),

∇0U(x0) = ikG(x0)∇0Φ(x0) ≈ ikG(x0)v̂0,

where the approximation replaces Φ by Φ0 (since Φ1 is
quite constant over the lens exit surface) and uses (C4).

Thus, (E1) becomes:

U(x) =
−ik

4π

∫
Σ0

dΣ0U(x0)
1
D

eikD(x,x0)n̂ · [v̂0 + D̂].

We are interested in the solution for large L, on the image
plane far from the lens. There, D−1 varies slowly, and
may be taken out of the integral.

As shown at the end of section (B 7), the outgoing ray
from the lens surface satisfies is almost parallel to the
z-axis (the optic axis), i.e., v̂0 ≈ k̂. (For a perfect lens,
v̂0 = k̂ since then the source point is imaged at ∞.) Sim-
ilarly, D̂ ≈ k̂ since the intensity at x we wish to explore is
not very much off-axis. The normal to the exit lens sur-
face is not parallel to k̂, but dΣ0 · k̂ = dΣ0n̂ · k̂ = dA0,
where dA0 is the surface element of S0, the plane tan-
gent to the exit surface of the lens at the point where
it intersects the optic axis and perpendicular to the op-
tic axis (the “tangent plane”). Therefore, the surface
integral can be converted from being over the exit sur-
face of the lens to being over the tangent plane. With
U(x0) ∼ exp ikΦ0(x0) given by the WKB approxima-
tion, the approximate solution to be evaluated is

U(x) ∼
∫

S0

dA0e
ik[Φ0(x0)+|x−x0|]. (E2)

Eq. (E2) is what we need hereafter. Since we are only
interested in relative values of |U(x)|2, constant factors
may be dropped or chosen at pleasure.

It is worth re-emphasis, that Φ0(x0) in Eq. (E2) is
the optical path length (C9), from the source to the exit
surface of the lens, at height r0 above the optic axis.
It is not the optical path length from the source to the
tangent plane whose surface area element is integrated
over in Eq. (E2).

APPENDIX F: POINT SPREAD FUNCTION
AND CONSEQUENCES

1. The Diffraction Integral

To integrate (E2), we need D = |x− x0|. Again, refer
to Fig.(19). The origin of the coordinate system is on
the optic axis, a large distance L away from the exit
surface of the lens. D makes a small angle β with respect
to the optic axis, and its horizontal component extends
a small distance ζL beyond the origin. Therefore, the
observation point is

x = r = îLβ + k̂Lζ.

The point on the surface of the lens is

x0 = îr0 cos φ + ĵr0 sinφ− k̂[L + σ]

where φ is the azimuthal angle in the tangent plane and

σ = R−
√

R2 − r2
0 ≈

r2
0

2R2
+

r4
0

8R3



31

is the “sagitta,” the horizontal distance between the sur-
face of the lens and the tangent plane, at height r0 above
the optic axis. With D = [(x− x0)2]1/2, dropping terms
of order L−1, we obtain:

eikD = eikL{1+(1/2)[β2−ζ+ 1
2 ζ2]}eik[−βr0 cos φ+(−ζ+1)σ],

and (E2) becomes

U(β) ∼
∫ b

0

r0dr0

∫ 2π

0

dφeik[Φ0(x0)−βr0 cos φ+(1−ζ)σ],

(F1)
where b is the radius of the exit pupil.

The purpose of section F 4 is to show that the optical
path length from the source point to the exit surface of
the lens at distance r0 from the optic axis is

Φ0 = 3.5R− r2
0

2R
− 37R

216

[r0

R

]4
= 3.5R− σ − R

21.6

[r0

R

]4
.

(F2)
Suppose a ray exits the lens at at distance r0 from the
optic axis in a direction almost parallel to k̂, and travels
the distance σ further to the tangent plane. As Eq. (F2)
shows, it still has to travel a bit further than that to
achieve the same optical path from source to tangent
plane as the axial ray (r0 = 0), whose optical path is
(R/2) + n2R = 3.5R. Thus, the wavefront is slightly
converging.

With change of variable to ρ ≡ r0/b and

b̄ ≡ b/R, σ̄(ρ) ≡ (b̄ρ)2

2
+

(b̄ρ)4

8
,

Eq. (F1) becomes

U(β) ∼
∫ 1

0

ρdρ

∫ 2π

0

dφe
−ikR

[
ρ4 b̄4

21.6+ρβb̄ cos φ+ζσ̄(ρ)

]
.

(F3)
The integral over φ is readily performed:

U(β) ∼
∫ 1

0

ρdρe
−ikR

[
ρ4 b̄4

21.6+ζσ̄(ρ)

]
J0(kRρβb̄), (F4)

where J0 is the Bessel function.
We note that if we choose the observation plane to be

ζ = 0 and neglect the exponent (a good approximation
for sufficiently small exit pupil radius b), the result can
be integrated using the identity d[xJ1(cx)]/dx = cxJ0(x),
with resulting intensity

IA(kbβ) ∼ |U(β)|2 ∼

[
2J1(kbβ)

kbβ

]2

. (F5)

IA(kbβ) is the well known and important Airy point
spread function of a circular perfect lens or aperture, dis-
cussed in Section III H and illustrated in Fig.11.

The exponent in (F4) is responsible for spherical aber-
ration. In geometrical optics, this is caused by the rays

at the outer edge of a lens coming to a focus on the optic
axis closer to the lens than the paraxial ray focus. In our
calculation, this is represented by the converging wave-
front. As a result, as one moves a plane along the optic
axis, one sees a circle of light of varying radius. One tries
to choose the best effective focal plane, the plane where
there is the “circle of least confusion” or the plane where
the on-axis intensity is largest. The value of the present
discussion is that it gives the intensity of the combined
diffraction and spherical aberration, something not given
by geometrical optics.

In order to slickly choose the best plane of focus, one
needs to introduce a complication, We express the expo-
nent in (F4) in terms of orthogonal Zernike polynomials
(designed just for this purpose!), R2n(ρ) ≡ Pn(2ρ2 − 1),
where the Pn are the Legendre polynomials. The first
three, which we shall need, are R0 = 1, R2 = 2ρ2 − 1,
R4 = 6ρ4−6ρ2+1. They obey the orthogonality relations∫ 1

0
ρdρR2nR2m = δnm(4n+2)−1. They also obey the neat

relation
∫ 1

0
ρdρR2n(ρ)J0(cρ) = (−1)nJ2n+1(c)/c.

In terms of these polynomials, (F4) becomes

U(β) = ∼
∫ 1

0

ρdρe
−ikR

[
R4b̄4

(
1

130+ ζ
48

)
+R2b̄2 1

4 (ζ+ 6b̄2
65 )

]
×J0(kRρβb̄). (F6)

(In obtaining (F6), we have set ζ[1 + b̄2/4] ≈ ζ, a few
percent error).

It is apparent that one can choose ζ so that the R2

term vanishes. Moreover, this is essentially the plane
of largest intensity on the optic axis (β = 0). Upon
setting J0(0) = 1 in Eq.(F6), expanding the exponential
to second order, and using the orthogonality relations,
the result is

|U(0)|2 =
∣∣∣2∫ 1

0

ρdρe−i[pR4+qR2]
∣∣∣2 = 1− p2

5
− q2

3
.

Since dp2/dζ << dq2/dζ the intensity is maximized to
a high degree of accuracy by setting ζ = −6b̄2/65 and
thus making the q2 term vanish. This best focus plane
is closer to the lens, consistent with the spherical aberra-
tion effect. When this value is put into the first term, it
becomes R4b̄

4[1 + b̄2/4]/130 ≈ R4b̄
4/130, using the same

approximation already made.

2. The Point Spread Function

Defining

β̄ ≡ kRβb̄, B̄ ≡ kRb̄4/130, (F7)

we arrive finally at the amplitude which combines diffrac-
tion and spherical aberration,

U(β̄) ∼
√

2
∫ 1

0

ρdρeiB̄R4(ρ)J0(ρβ̄). (F8)
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Fig. (20) contains plots of I(r), the intensity of light
due to a point source imaged by the lens on the image
plane, i.e., the point spread function,

I(r) =
√

B̄|U(kbr/f)|2, (F9)

for various exit pupil radii b, for our 1mm diameter lens.
r is the distance from the optic axis. (F7) has been used
(with β = r/f , as discussed at the end of the introduction
to this Appendix), with λ = .55µm, and f = (3/2)R =
.75mm.

The reason for the factor
√

2 in Eq. (F8) and the factor√
B̄ in Eq. (F9) are as follows.
Using the Fourier-Bessel relation∫ ∞

0

β̄dβ̄J0(ρβ̄)J0(ρ′β̄) = ρ−1δ(ρ− ρ′),

because of the factor
√

2 in (F8), an integral proportional
to the total energy emerging from the lens (proportional
to the intensity integrated over the area of the image
plane) is conveniently normalized to 1:∫ ∞

0

β̄dβ̄|U(β̄)|2 = 2
∫ 1

0

ρdρ = 1

(the maximum β̄ allowed by our limitation sinβ ≈ β, is
large enough to allow the integral to be extended to ∞
with good accuracy).

FIG. 20: Point spread functions I(r) for b = .16µm (B̄ = .5),
b = .19µm (B̄ = 1), b = .23µm (B̄ = 2), b = .29µm (B̄ = 5).

However, the total energy emerging from the lens
should be proportional to the exit pupil area, ∼ b2. Since√

B̄ ∼ b2 (see (F7)), this factor is included in the defini-
tion (F9) of the point spread function.

It is useful to have an approximate analytic expression
for the point spread function, at least for small values of
B̄. Expansion of (F8) to second order in B̄ gives

U(β̄) ∼
√

2
∫ 1

0

ρdρ[1− iB̄R4 −
1
2
(B̄R4)2]J0(ρβ̄).

A little algebra shows that R2
4 = (18/35)R8 + (2/7)R4 +

(1/5) so, dropping the R8 term,

U(β̄) ∼
√

2

{[
1− B̄2

10

]
J1(β̄)

β̄
− B̄2

7
J5(β̄)

β̄
− iB̄

J5(β̄)
β̄

}
.

Thus, to second order in B̄ (neglecting the small ∼ J1J5)
term), the point spread function is, approximately,

I(r)/
√

B̄ ∼ 1
2

(
2J1(β̄)

β̄

)2(
1− B̄2

5

)
+

B̄2

2

(
2J5(β̄)

β̄

)2

(F10)

The normalized total energy is still 1 in this approxima-
tion:∫ ∞

0

β̄dβ̄I(r)/
√

B̄ =
1
2

{
2

(
1− B̄2

5

)
+ B̄2 2

5

}
= 1.

Eq. (F10) shows that, for small B̄ (small b), the point
spread function is essentially the Airy function. As B̄
grows, the amplitude of the Airy function decreases, with
concomitant growth of a fifth order Bessel function con-
tribution which vanishes for r = 0, and whose oscillations
are displaced to larger r values than the oscillations of the
Airy function.

Eq. (F10) has good accuracy for B̄ = 1: it is ≈ 2.5%
low at β̄ = 0, improving to negligible inaccuracy at β̄ = 1
and beyond. (For B̄ = 1.3 and 1.5, these percentages are
6% and 12% at β̄ = 0, with negligible inaccuracy beyond
β̄ = 2.5, 3 respectively.)

3. The Exit Pupil

These results may be used to choose the optimum exit
pupil radius b for our lens.

As can be seen from Fig. (20), as b is increased from a
small value, the intensity on the optic axis r = 0 initially
grows, because the exit pupil is allowing more light to
exit the lens. For small values of b (B̄ < 1), the intensity
distribution (F10) is essentially ∼ IA(β̄), the Airy func-
tion, variously given in (F5) or Eq. (3), and illustrated
in Fig.11 and the B̄ = .5 curve in Fig. (20). The Airy
radius for our lens is, from Eq. (4),

rA = .61
λ

b/f
=

.50
b̄

µm. (F11)



33

b/f is called the lens “numerical aperture.”
For the Airy function, ≈84% of the light energy lies

within the Airy disc. But, as b increases further, spher-
ical aberration kicks in, the intensity on the optic axis
starts to diminish and a greater percentage of light en-
ergy appears beyond rA. For the values b =.16, .19, .23
and .29µm, used in Fig. (20), Eq. (F11) gives rA =1.56,
1.3, 1.1 and .86µm respectively. The first two curves ap-
pear to reach 0 at these values of rA, whereas the last
two curves deviate somewhat.

One wants b to be as large as possible, to decrease rA

and thus increase resolution, and to let as much light
as possible exit the lens. However, as b grows, spherical
aberration grows, as seen in Fig. (20): I(r) decreases for
r < rA and more light appears for r > rA, so resolution
decreases. A rule of thumb, called the Strehl criterion,
suggests increasing b until the maximum intensity, the
intensity on the optic axis I(0), is reduced to 80% of
the maximum intensity on the optic axis without any
spherical aberration. Then, the image is considered still
diffraction limited, i.e., the image is still essentially the
Airy disc. From (F9), we see I(0) ≈ 1/2[1 − (B̄)2/5].
Thus, the Strehl criterion implies B̄ = 1. It does seem
from Fig. (20) that this is an optimal choice.

For B̄ = 1, the wavefront (the surface of constant
phase), for a ray exiting the lens a distance ≡ ρb above
the optic axis, goes beyond the tangent plane by the
distance Rρ4b̄4/21.6 = ρ46B̄/k ≈ λρ4, according to
Eq.(F4). Thus, the wavefront at the edge of the exit
pupil, ρ = 1, is about a wavelength in front of the tan-
gent plane. For B̄ > 1, images are available[85] show-
ing appreciable spherical aberration, for path differences
from 1.4λρ4 to 17.5λρ4.

4. Optical Path Calculation

The unfinished business remains of showing that the
optical path length, of a ray emerging from the source at
the lens focal length, passing through the lens and up to
its exit surface, is given by Eq. (F2). For the following
discussion, refer to Fig. (21). The focal length of the
lens, according to Eq. (4), is f = nR/2(n − 1) = 1.5R
for n = 1.5. Thus, the point source at a is at a distance
R/2 to the left of the lens surface. We shall follow a ray
which leaves the source at angle α to the optic axis.

A simplifying feature, which occurs only for n = 1.5,
is that the angle of refraction cde also happens to be α.
That can be seen as follows. The angle of incidence θ
and the angle of refraction θ′ are related by Snell’s law,
sin θ = n sin θ′. By the law of sines applied to the triangle
adc, sinα/R = sin(π− θ)/f , or sin θ = (f/R) sinα. This
is the same as Snell’s law provided f = nR, which is only
true for n=1.5.

The axial ray, α = 0, obviously has optical path length
(R/2) + n2R = 3.5R. For arbitrary α, the optical path
length Φ0 is ad+nde or, as can readily be seen from

FIG. 21: Optical path length geometry

Fig.(21),

Φ0 =
R sin(θ − α)

sin(α)
+ (1.5)2R cos α

= 4.5R cos α−R cos θ

= 4.5R cos α−R
√

1− (1.5 sinα)2

≈ R[3.5− (9/8)α2 + (57/128)α4 + ....] (F12)

The approximation (F12) is good to about 1% at α =
.6 ≈ 34◦. We want to express Φ0 in terms of the distance
r0 between the optic axis and the exit point e. In terms
of α, r0 is

r0 = R sin(3α− θ)

= R sin 3α
√

1− (1.5 sinα)2 −R1.5 cos 3α sinα

≈ R[1.5α− (7/8)α3 + ...].

This equation can be inverted,

α = R−1[(2/3)r0 + (14/81)r3
0 + ...]

and inserted into Eq. (F12), with the result (F2).
It was mentioned earlier that the angle γ the exiting

ray makes with the horizontal is quite small. Here is the
argument. From Fig. (21), γ = 2θ−3α. From Snell’s law,
θ − θ3/6 ≈ (3/2)[α − α3/6], or θ ≈ (3/2)α + (5/16)α3,
so γ ≈ (5/8)α3. Thus, the horizontal distance σ from
e to the tangent plane differs from the actual distance
σ[1 + (1/2)γ2] by a negligibly small amount.

APPENDIX G: EXTENDED OBJECT

Having treated the image of a point source, we shall
now consider the image of a uniformly illuminated hole
of radius a. The hole models a transparent object such as
a spherosome or a polystyrene sphere. We shall suppose
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that the lens is diffraction limited, i.e., the exit pupil has
been chosen so that the image of a point source is the
Airy intensity distribution.

But first, we remark that the intensity in this problem
is related to that of the complementary case, the image of
an opaque disc of radius a. According to Babinet’s prin-
ciple, the sum of the light amplitudes for these two cases
is the constant light amplitude without either. (This is
easy to see from the linearity of the Huyghens-Fresnel-
Fraunhofer expression discussed in Appendix B 3). So,
where one is light, the other is dark.

Suppose the hole is illuminated with incoherent light,
as in ordinary microscopy. If a < λ/4, the illumination is
nonetheless effectively coherent, since any incident plane
wave of random phase will have little phase difference
across the hole. If a > λ/2, the illumination may be
considered incoherent. This is the case considered here.

1. Incoherent Illumination

If this were geometrical optics, light from each uni-
formly illuminated point of the object plane would pass
through the lens and be focused as an illuminated point
on the image plane. The properly scaled image of all
these illuminated points would be a uniformly illumi-
nated circle of radius a. We shall call the circumference
of this circle the “image circle edge.” The new wrinkle is
that diffraction surrounds each imaged point with its own
Airy disc (assuming that spherical aberration is negligi-
ble), so that the image extends beyond the image circle
edge. The intensities add so, at a point r on the image
plane, the net intensity is

I(r) ∼ 1
π

∫
A0

dA0

[
J1(kb̃|r− r0|)
|r− r0|

]2
, (G1)

where A0 is the area of the image circle, and b̃ ≡ b/f is
called the numerical aperture.

For a >> rA, where rA is the Airy radius, the intensity
at the center point of the image circle is, by (G1),

I(0) ∼ 1
π

∫ a

0

r0dr0

∫ 2π

0

dφ

[
J1(kb̃r0)

r0

]2
≈ 1.

In this equation, the limit a has been extended to∞ with
no appreciable error, since the major contribution is from
Airy discs centered within distance rA of the origin.

As the point of interest moves off center, the intensity
remains essentially constant, until at a distance ≈ a− rA

from the center, a distance rA from the image circle edge.
Then I starts to decrease, reaching the value ≈ .5 at the
edge. This is because, at the edge, ≈half the Airy discs

contribute intensity, compared to the discs which con-
tribute intensity at a point well inside the image circle.

Now, we turn to quantitative analysis of the general
case, with no restriction of the relative sizes of a and rA.
We shall calculate the intensity (G1) outside the image
circle, at r = 0 which is placed a distance z beyond the
image circle edge, i.e., the center of the image circle in
this coordinate system is at r = a + z. The contribut-
ing Airy disc centers lie within the image circle, between
radius r0 (z ≤ r0 ≤ 2a + z) and radius r0 + dr0, along
an arc subtending an angle 2φ. The hole circumference
(x−a−z)2 +y2 = a2 cuts this arc at two points. Setting
x = r0 cos φ and y = r0 sinφ in this expression allows one
to find cos φ. Eq. (G1) becomes

Iout(z) ∼ 2
π

∫ 2a+z

z

dr0 cos−1

[
r2
0 + z2 + 2az

2r0(a + z)

]
J2

1 (kb̃r0)
r0

(G2)
For completeness, we put here the comparable expres-

sion for the intensity inside the image circle. Again, we
calculate the intensity (G1) at r = 0, where this new
coordinate system origin is a distance z away from the
center of the image circle. There are two contributions,
one from a circular area of radius a − z, the other from
the rest of the disc (a− z ≤ r0 ≤ a + z):

Iin(z) ∼ 2
∫ a−z

0

dr0
J2

1 (kb̃r0)
r0

+
2
π

∫ a+z

a−z

dr0 cos−1

[
r2
0 + z2 − a2

2r0z

]
J2

1 (kb̃r0)
r0

. (G3)

For large a, (G2) becomes

Iout(z) ≈ 2
π

∫ ∞

z

dr0 cos−1

[
z

r0

]
J2

1 (kb̃r0)
r0

This is a function of kb̃z = 3.83(z/rA). Numerical eval-
uation shows Iout(z) drops from .5 at z = 0 to ≈ .05 at
z = rA. While it is somewhat subjective, this suggests
that we take the perceived edge of the image of the hole
to be located where the intensity is 5% of its maximum
value at the center of the image circle. Thus, diffraction
increases the radius of a large hole from a to R ≈ a+ rA.

By changing the variable of integration in (G2) to r0/a,
one sees that the intensity is a function of two variables,
z/a and kb̃a/3.83 = a/rA. For each value of a/rA, one
can numerically solve Eq. (G2) for the value of z/a for
which I(z) = .05I(0). This is the ratio R/a, where R is
defined as the radius of the image. A graph of R/rA vs
a/rA is given in Fig. 12, and is discussed in section IIIH.
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